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Neutrino-driven winds
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These conditions are not reached in state-of-the-art neutrino-driven wind simulations
Do supernovae produce the heavy r-process nuclei!
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Neutrino-driven winds
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Production of heavy elements (A>130)

requires high neutron-to-seed ratio
(Yn/Yseed~ I OO).

Necessary conditions for the r-process:

. inhibits the alpha-
process and thus the formation of
seed nuclei

* neutron rich ejecta:

. is equivalent to high
photon-to-baryon ratio. Photons
dissociate seed nuclei into nucleons.

(Meyer et al. 1992, Hoffman et al. 1997,
Otsuki et al. 2000, Thompson et al. 2001...)

These conditions are not reached in state-of-the-art neutrino-driven wind simulations
Do supernovae produce the heavy r-process nuclei’
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Neutrino-driven wind simulations and nucleosynthesis networks

Simulations of core-collapse supernovae and the subsequent neutrino-driven winds

Problems: - explosion mechanism (Janka et al. 2007)
- simulations are computationally very expensive to follow the wind phase
Solutions: - steady-state wind models (Otsuki et al. 2000, Thompson el al. 200, Wanajo 2000-2010)
- one-dimensional simulations with an artificial explosion
(Arcones et al. 2007 (also 2d), Fischer et al. 2009)

Nucleosynthesis network including over 5000 nuclei from stability to drip lines

- Network input: trajectories (P, T) from hydrodynamical simulations + initial Y.

- Starting composition at 10GK is given by nuclear statistical equilibrium.

- Before alpha-rich freeze out: extended nuclear reaction network including neutral and charged
particle reactions from REACLIB (Frohlich et al. 2006), and weak-reaction rates (Fuller et al. 1999,
Langanke & Martinez-Pinedo 2000).

- After alpha-rich freeze out: fully implicit r-process network including neutron capture,
photodissotiation (Rauscher & Thielemann 2000), beta decay (experimental + Moller et al. 2003), and
fission (Panov et al. 2009).
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Neutrino-driven wind results

Arcones et al. 2007
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Neutrino-driven wind results

Arcones et al. 2007
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r-process in_neutrino-driven winds

We artificially increase the entropy to reach high enough neutron-to-seed ratio to produce
the third r-process peak (A~195).
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r-process: long-time evolution and reverse shock

We use one trajectory from the hydrodynamical simulations of Arcones et al. 2007 with
the entropy increased by a factor two.

Vary the long-time evolution:
- reverse shock at 1GK

- no reverse shock
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r-process: long-time evolution and reverse shock

We use one trajectory from the hydrodynamical simulations of Arcones et al. 2007 with
the entropy increased by a factor two.

Vary the long-time evolution:
- reverse shock at | GK
- no reverse shock

. Arcones & Martinez-Pinedo, in prep.
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r-process: long-time evolution and reverse shock
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Long-time evolution: high vs. low temperature

Hot r-process Cold r-process
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The evolution takes place under (n,Y)-(Y,n) Competition between beta decay and
equilibrium (classical r-process, Seeger, Fowler neutron capture (Blake & Schramm 1976, Wanajo
and Clayton|965, Kratz et al. I993). 2007, Janka & Panov 2009)
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Long-time evolution: high vs. low temperature
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The evolution takes place under (n,Y)-(Y,n)
equilibrium (classical r-process, Seeger, Fowler
and Clayton|965, Kratz et al. I993).

Competition between beta decay and

neutron capture (Blake & Schramm 1976, Wanajo
2007, Janka & Panov 2009)

Final abundances are strongly affected by neutron captures and beta decays that
compete when matter moves back to stability.
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Sensitivity to mass models

Compare four different mass models:

-FRDM (Méller et al. 1995)
-ETFSI-Q (Pearson et al. 1996)
- HFB-17 (Goriely et al. 2009)

- Duflo&Zuker mass formula

two cases: (n,Y)-(Y,n) equilibrium and
non-equilibrium.

The nuclear physics input affects the
final abundances differently depending
on the long-time dynamical evolution.

Can we link the behavior of the masses
(neutron separation energies) to the
final r-process abundances!?
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Sensitivity to mass models
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VVay back to stability
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Neutron captures and beta-delayed neutron emission
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We compare final abundances with and
without beta-delayed neutron emission
and with and without neutron captures
after freeze-out.
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Neutron captures and beta-delayed neutron emission
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We compare final abundances with and
without beta-delayed neutron emission
and with and without neutron captures
after freeze-out.

The main role of the beta-delayed neutron
emission is to supply neutrons.
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Neutron captures and beta-delayed neutron emission
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We compare final abundances with and
without beta-delayed neutron emission
and with and without neutron captures
after freeze-out.

The main role of the beta-delayed neutron
emission is to supply neutrons.
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Conclusions

* Recent long-time supernova simulations do not produce r-process elements:
find too low entropies and too high electron fractions.

* By artificially increasing the entropy, our hydrodynamical simulations provide a
realistic basis to study and understand the major impacts of the long-time
dynamical evolution and of nuclear masses on the abundances.

* As matter moves back to stability neutron captures are as important as beta-
delayed neutron emission.
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Conclusions

* Recent long-time supernova simulations do not produce r-process elements:
find too low entropies and too high electron fractions.

* By artificially increasing the entropy, our hydrodynamical simulations provide a
realistic basis to study and understand the major impacts of the long-time
dynamical evolution and of nuclear masses on the abundances.

* As matter moves back to stability neutron captures are as important as beta-
delayed neutron emission.

and outlook

* Multi-dimensional simulations with improved neutrino transport.
* Experiments for masses, improve theoretical models.
* Explore the impact of beta decays (Ivan Borzov: Poster 292).
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