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Half of the heavy elements are made through the 
s process

Stellar H, He, C, O, Si Burning
 stars, novae, supernovae

Cosmic Rays

p-process
  

s-process
 He Shell-burning in AGB stars
 core and shell burning in massive stars

r-process
 type II supernovae?,
 merging neutron stars?

Abundances and Attribution from Anders & Grevesse, 1989 
and Käppeler, Beer, and Wisshak, 1989 

neutron capture

  

● Heavy element 
synthesis is dominated 
by neutron capture

● Reactions of interest lie 
near stability, making 
measurements 
experimentally 
tractable

● Historically, separation 
of s and r process 
synthesis based on 
s process contribution



Main s Process:  Thermally Pulsing AGB Stars

● Neutron exposures of 
108 n/cm3 and 1011 
n/cm3 are experienced 
during different phases

● Temperatures range 
from kT=8 keV up to 
kT=25 keV during the 
13C and 22Ne phases

● Neutron capture cross-
sections are critical for 
understanding the 
stellar sites and 
differentiating between 
stellar models



The Weak s Process: Massive stars

• The weak s process operates in massive stars (M > 8M
sun

 )
– Responsible for majority of s process synthesis of A<90

• Neutron exposures are achieved during He burning and 
shell C burning

• Temperatures and neutron densities are quite different 
than for the main s process
– He Burning: 22Ne(α,n)  

– kT=25 keV, 106 n/cm3

– Carbon Shell burning: Various neutron sources  
– kT=90 keV, 1011 n/cm3 

• Unlike in low-mass AGB stars, later processing must be 
considered 
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For Details, see

M. Pignatari

NIC_XI_285
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Where does this leave us?

• Reaction rates, observations, and stellar modeling are 
quite mature
– We can reliably diagnose where improved measurements are 

needed
– Measurements can reveal detailed information about mixing, 

temperatures, and neutron density
– We can potentially discriminate between competing stellar models
– Precision measurements are often required
– The “easy” measurements have already been done

• As an additional challenge, the measurements are needed 
over a range of energies, and many different isotopes play 
important roles in different scenarios
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Experimental needs for the s process

• Half-lives
– Needed for details of branch points
– Thermally enhanced decay lifetimes particularly valuable

– Presently we are still dependent on theory to predict them

• Charged particle reaction rates
– Energy production (and convection/mixing)
– Neutron production (primarily 13C(α,n) and 22Ne(α,n))

• Neutron induced reaction rates
– Primarily neutron capture
– Measurements on stable & unstable isotopes
– Neutron poisons
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Charged particle reactions

• Charged particle 
reaction rate 
measurements suffer 
from low temperatures 
and high Coulomb 
barriers

• In the recent work by 
Heil et al. the final 
analysis included 5 
reaction channels, 11 
data sets, and a 
resonance analysis of 
80+ resonances

• Together, it brought the 
13C(α,n) rate uncertainty 
down to ~20%. Heil et al. PRC (2008)
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Neutron capture in the s process
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Measurements for the weak s process

• New activation measurement on 
62Ni adjusted abundances 30 
mass units down-stream

• Cross sections for the weak s 
process are
– small
– difficult to calculate
– likely non-statistical
– Individual resonances and 

DC likely play a role
– Impact propogates

• Multiple measurement 
techniques may be needed to 
understand the weak s process

Nassar et al. PRL 2005

Effect of improved 62Ni(n,γ)
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Measurements for the weak s process

• New activation measurement on 
62Ni adjusted abundances 30 
mass units down-stream

• Cross sections for the weak s 
process are
– small
– difficult to calculate
– likely non-statistical
– Individual resonances and 

DC likely play a role
– Impact propogates

• Multiple measurement 
techniques may be needed to 
understand the weak s process

Nassar et al. PRL 2005

Effect of improved 62Ni(n,γ)

See talk by

C. Lederer

(Don't leave after coffee!)
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What is needed to measure neutron capture?

• Neutrons

• Capture Signature

• Sample



Time of Flight with Spallation Neutrons

Proton Bunch

Collimator
White Neutron Bunch DANCE

Water Moderator

~20 m

Ep= 800 MeV         p=20 Hz          10 meV < En < 500 keV
n = 3 • 105 n/s/cm2/decade

Spallation
Target
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Measurements with 7Li(p,n)

Neutron beam 
for activation

2 mA proton beam
250 kHz
< 1ns pulse width
neutron flux: 4·107 s-1 cm-2

neutron flux:
1·1012 s-1

Layout of the FRANZ Facility
R. Reifarth, PASA 2009
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Neutron source properties

• Neutron spallation sources
– Cover a very wide energy range 
– Excellent energy resolution
– High resolution differential data can be adapted to the burning 

regime of interest
– May have difficulties with non-resonant components
– Cannot be used for activation

• 7Li(p,n) sources
– Provide “ideal” spectrum
– Relatively small
– Miss the high and low energy parts of the spectrum
– Can be used for high intensity activation



Signatures of Capture:  Why detectors matter

• Neutron capture measurements were often 
performed with C6D6 liquid scintillators

– C6D6 has very low neutron sensitivity, but no 
energy information.

– High purity samples are always required.
– Gamma rays from a radioactive sample 

could not be distinguished from neutron 
capture.

– C6D6 has very low efficiency, typically 
requiring gram samples.

• Calorimetric detectors can distinguish 
capture from decay based on total energy.

– High efficiency allows small samples.
– Isotopically mixed samples can be used if 

the isotopes have sufficiently different Q-
value

– High segmentation limits individual crystal 
count rates.

• Typical capture releases 6-10 
MeV in gamma ray energy

• Neutron energies do not 
significantly impact emitted 
energy
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Alternatives to direct gamma-detection

• Activation/AMS
– Offers measurement on small samples
– Naturally measures DC and resonant components
– Requires an appropriate lifetime product
– Different systematics than “traditional” measurements
– Integral measurements valuable, but may be difficult to generalize

• Photodissociation (γ,n)
– Deduces rate from detailed balance
– Can offer alternative way to reach unstable nuclei
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Alternatives to direct gamma-detection

• Activation/AMS
– Offers measurement on small samples
– Naturally measures DC and resonant components
– Requires an appropriate lifetime product
– Different systematics than “traditional” measurements
– Integral measurements valuable, but may be difficult to generalize

• Photodissociation (γ,n)
– Deduces rate from detailed balance
– Can offer alternative way to reach unstable nuclei

See poster by

A. Wallner

NIC_XI_375
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Estimated Neutron Fluxes Required for 
Measurements on Branch Point Isotopes

Some measurements exist

No measurements exist

Couture and  Reifarth, ADNDT(2007)

Each branch-point 
illustrates how the s-
process operates in stars of 
different mass, age and 
metallicity

Only with measurements on 
many isotopes will we 
understand the temperature 
and densities in the many 
different s-process 
scenarios

There remains much to do, 
but many of the tools are 
available today
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Where, oh where, can my sample be?
Should I make it?

• For modern facilities, we need 100 μg- 10 mg size samples 

Radiochemistry

Sample
Isotope Separation?

• Very expensive

• Each isotope is a research project

• Time consuming
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Or should I look in the trash?

• In addition to 
“science” beams, 
new RIB facilities 
will make lots of 
valuable “trash”

• If it can be 
salvaged, it may 
offer useful 
samples for 
s process 
studies

• Planning should 
be done early

Estimated FRIB Activities 
B. Sherrill, private comm.
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Conclusions

• A very diverse set of experiments are needed to support s process 
nucleosynthesis studies

• Charged particle studies are challenging and exhibit many similar 
properties as measurements that have been discussed for He burning 
and measurements at underground labs

• To understand neutron capture, a diverse set of tools are needed
– Because the stellar sites have changed, it is necessary to revisit 

some measurements and predictions

• Measurements on radioactive isotopes are often possible, but we lack 
samples
– We must be creative in trying to find ways to get them
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