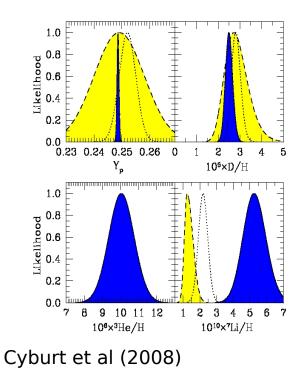

Big Bang Nucleosynthesis constraints on Supersymmetry

Richard H. Cyburt


Joint Institute for Nuclear Astrophysics (JINA) National Superconducting Cyclotron Laboratory (NSCL) Michigan State University (MSU)

Standard BBN Results

BBN predictions

• Obs. comparison

Nuclei in the Cosmos 2010

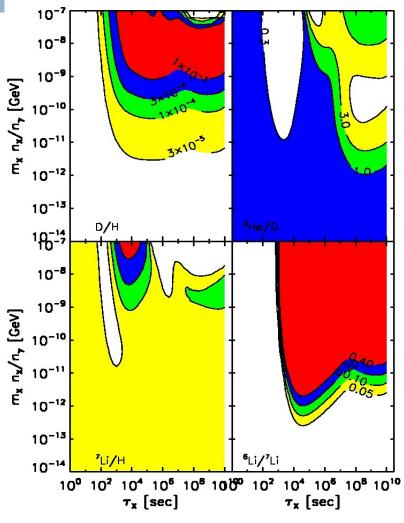
Cyburt (2004) Descouvemont et al (2004) Serpico et al (2004)

How to fix the Li problem

- Observation
 - Unknown systematic?
- Stellar Evolution
 - Extra mixing?
 - Binary companion contamination?
- Exotic Physics (e.g. particle physics)

Exotic Particle Physics

- Test new physics with obs. comparison
- \square Simple ext. constrained as N_{v,eff}
- Dark matter and/or SUSY inspired
 - Long-lived heavy particles
 - Decay products change BBN predictions


Decaying Particles

- Decay during or after BBN
- E/M and hadronic decays
- Injected particles are of high energy
 - Dominated by energy loss w/ bg
 - Erode existing nuclides into others
- Possible catylized fusion

Results for X decays

No change in SBBN predictions X-abun/injected energy too low Erode Li7 predictions to obs level Keeping D & He4 agreement Destroy all agreement with obs

Results

Pospelov et al (2010) Cyburt et al (2009) Jedamzik et al (2006) Kohri et al (2005)

Conclusions

- Li problem remains
- New physics is likely explanation
 - Stellar evolution
 - Exotic physics (e.g. SUSY)
- BBN excludes large parameter space
- LHC is poised to obs. SUSY

Collaborators

- John Ellis (CERN)
- Brian D. Fields (University of Illinois)
- Feng Luo (University of Minnesota)
- Keith A. Olive (University of Minnesota)
- Vassilis C. Spanos (University of Patras)