

Studying the (α, p)-process in X-Ray Bursts using Radioactive Ion Beams

Catherine M. Deibel

Joint Institute for Nuclear Astrophysics Michigan State University

> Physics Division Argonne National Laboratory

Type I X-Ray Bursts (XRBs)

Neutron stars: 1.4 M_o, 10 km radius

Normal star

Accretion rate ~ $10^{-8}/10^{-10}$ M_o/year Peak x-ray burst temperature ~ 1.5 GK Recurrence rate ~ hours to days Burst duration of 10 - 100 s Observed x-ray outburst ~ $10^{39} - 10^{49}$ ergs

Nucleosynthesis in XRBs

 Reach nuclei far from stability, close to the proton-drip line

Waiting points in XRBs

- Potential waiting points in XRBs (Fisker, Schatz, Thielemann, ApJ SS 2008):
 - ²²Mg
 - ²⁶Si
 - ³⁰S
 - ³⁴Ar
- At lower temperatures, nuclei with low (*p*,γ) Q values come into (*p*,γ) – (γ,*p*) equilibrium
- If the (*α*, *p*) reaction rate is weak OR if the temperature is too low to overcome the Coulomb barrier for the (*α*, *p*) process, nuclear flow must await β⁺- decay (T_{1/2} = few seconds) before continuing on

Waiting Point Effects

- Waiting points can affect the nucleosynthetic path
 - Final elemental abundances
 - Energy output during burst
 - Composition of neutron star surface → affects observables

- Luminosity profile can be affected due to pause in energy output as process pauses at waiting point
 - Leads to observed doublepeak luminosity profiles

Reaction	Models affected
${}^{12}C(\alpha, \gamma){}^{16}O^{a}$	F08, K04-B2, K04-B4, K04-B5
$^{18}Ne(\alpha, p)^{21}Na^{a}$	K04-B1 ^b
${}^{26}Si(\alpha, p){}^{28}P$	K04-B5
$^{26g}Al(\alpha, p)^{29}Si$	F08
$^{29}S(\alpha, p)^{32}Cl$	K04-B5
${}^{30}P(\alpha, p){}^{33}S$	K04-B4
${}^{30}S(\alpha, p){}^{23}Cl$	K04-B4 ^b , K04-B5 ^b
${}^{\rm S1}Cl(p, \gamma){}^{\rm S2}Ar$	K04-B1
${}^{32}S(\alpha, \gamma) {}^{36}Ar$	K04-B2
⁵⁶ Ni(α, p) ⁵⁰ Cu	S01 ^b , K04-B5
⁵⁷ Cu(p, γ) ⁵⁸ Zn	F08
${}^{50}Cu(p, \gamma){}^{60}Zn$	S01 ^b , K04-B5
${}^{61}Ga(p, \gamma){}^{62}Ge$	F08, K04-B1, K04-B2, K04-B5, K04-B6
${}^{66}As(p, \gamma) {}^{66}Se$	K04 ^b , K04-B1, K04-B2 ^b , K04-B3 ^b , K04-B4, K04-B5, K04-B6
${}^{69}Br(p, \gamma)^{70}Kr$	K04-B7
${\rm ^{76}Rb}(p, \gamma){\rm ^{76}Sr}$	K04-B2
${}^{82}Zr(p, \gamma){}^{83}Nb$	K04-B6
${}^{84}Zr(p, \gamma){}^{85}Nb$	K04-B2
$^{84}Nb(p, \gamma)^{86}Mo$	K04-B6
${}^{86}Mo(p, \gamma){}^{86}Tc$	F08
${}^{86}Mo(p, \gamma){}^{87}Tc$	F08, K04-B6
${}^{87}Mo(p, \gamma){}^{88}Tc$	K04-B6
92 Ru(p, $\gamma)$ 96 Rh	K04-B2, K04-B6
93 Rh(p, γ) 94 Pd	K04-B2
${}^{96}Ag(p, \gamma){}^{97}Cd$	K04, K04-B2, K04-B3, K04-B7
$^{102}In(p, \gamma)^{103}Sn$	K04, K04-B3
$103 In(p, \gamma)^{104}Sn$	K04-B3, K04-B7
105 Sn(α , p) 106 Sb	S01 ^b

Table 20. Nuclear processes affecting the total energy output by more than 5%, as well as the yield of at least one isotope, when their nominal rates are individually varied by a factor of 10 up and/or down, for the given model. See text for details.

Reaction	Models affected
${}^{15}O(\alpha, \gamma){}^{19}Ne^{a}$	K04, K04-B1, K04-B6
$^{18}Ne(\alpha, p)^{21}Na^{a}$	K04-B1, K04-B6
$^{22}Mg(\alpha, p)^{26}Al$	Fos
$^{23}Al(p, \gamma)^{24}Si$	K04-B1
$^{24}\mathrm{Mg}(\alpha,\mathrm{p})^{27}\mathrm{Al^a}$	K04-B2
$^{26g}Al(p, \gamma)^{27}Si^{a}$	F08
${}^{28}Si(\alpha, p){}^{31}P^{a}$	K04-B4
${}^{30}S(\alpha, p){}^{23}Cl$	K04-B4, K04-B5
$^{s1}Cl(p, \gamma)^{s2}Ar$	K04-B3
${}^{$2}S(\alpha, p){}^{$5}Cl$	K04-B2
$^{25}Cl(p, \gamma)^{26}Ar^{a}$	K04-B2
⁵⁶ Ni(α, p) ⁵⁹ Cu	S01
${}^{50}Cu(p, \gamma){}^{60}Zn$	S01
${}^{65}As(p, \gamma) {}^{66}Se$	K04, K04-B2, K04-B3
${}^{69}Br(p, \gamma)^{70}Kr$	S01
$^{71}Br(p, \gamma)^{72}Kr$	K04-B7
108 Sn(α , p) 108 Sb	S01

^aReaction experimentally constrained to better than a factor of ~ 10 at XRB temperatures. See Section 5.

A. Parikh et al., ApJ SS (2008).

J.L. Fisker, F.K. Thielemann, and M. Wiescher ApJ 608, L61 (2004).

Reaction Rates in XRBs

- Current models and studies are based on theoretical Hauser– Feschbach reaction rates → Almost no experimentally obtained information is known
 - NIC_XI_366, NIC_XI_098
 - O'Brien *et al.*, AIP Conf. Proc. 2009
- Given the current limitations of radioactive beam facilities most rp- and α, p-process reactions are inaccessible
- Radioactive beams close to stability can be produced at ATLAS via the "in-flight" technique
- Studied (α, p) reactions on potential waiting points using timeinverse and inverse kinematic reactions:
 - $p(^{29}P,^{26}Si)\alpha$
 - $p({}^{33}\text{Cl},{}^{30}\text{S})\alpha$
 - $p({}^{37}K,{}^{34}Ar)\alpha$

- α -particles detected in Double-Sided Si Detector (DSSD)
- Heavier reaction products separated by Enge SplitPole Spectrograph used in gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and ionization chamber at focal plane of spectrograph

- Examples: ⁶He, ⁷Be, ⁸Be, ⁸Li, ¹¹C, ¹⁴O, ¹⁶N, ¹⁷F, ^{20,21}Na, ²⁵Al, ²⁹P, ³³Cl, and ³⁷K
- ³²S¹³⁺ stable primary beam
- Gas cell filled with deuterium
- ³²S(d,n)³³Cl produces ³³Cl¹⁷⁺ radioactive beam

³³Cl beam production

- Resulting beam is a cocktail of ³²S¹³⁺, ³²S¹⁴⁺, ³²S¹⁵⁺, ³²S¹⁶⁺, and ³³Cl¹⁷⁺
- ³³Cl¹⁷⁺ Tuned with ΔE E telescope
 - Si Surface Barrier (SSB) detectors
 - $\Delta E 20 \ \mu m$ thick
 - E 150 μ m thick
- RF sweeper is used to eliminate much of the contaminant ³²S beam
- Final ³³Cl beam intensity of 1.67 x 10⁴ pps

- α -particles detected in Double-Sided Si Detector (DSSD)
- Heavier reaction products separated by Enge SplitPole Spectrograph used in gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and ionization chamber at focal plane of spectrograph

- α-particles detected in **Double-Sided Si Detector (DSSD)**
- Heavier reaction products separated by Enge SplitPole Spectrograph used in gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and ionization chamber at focal plane of spectrograph

- α -particles detected in Double-Sided Si Detector (DSSD)
- Heavier reaction products separated by Enge SplitPole Spectrograph used in gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and ionization chamber at focal plane of spectrograph

Proof of Principle with stable beam reactions: $p({}^{33}S, {}^{30}P)\alpha$

- Using the same setup the $p({}^{33}S, {}^{30}P)\alpha$ reaction was studied with a stable ${}^{33}S$ beam
- Gating on the ³⁰P-α coincidences and particle groups gives clear kinematic curves
- Data shown for multiple energy points
- Blue curves represent kinematic simulations

$p(^{33}\text{Cl},^{30}\text{S})\alpha$ Data

- ³⁰S α coincidences seen as well defined timing peak
- Using radioactive ³³Cl beam, particle ID is more difficult due to diffuseness of beam

Time of Flight of Reaction Products as a function of Focal Plane Position

$p(^{33}Cl,^{30}S)\alpha$ Results: Simulations vs. Experiment

$p(^{33}\text{Cl},^{30}\text{S})\alpha$ Results

- Normalized via
 - Rutherford scattering
 - Direct beam measurements in spectrograph
 - Two methods agree within 10%
- Measurements made at three different energy points
- NON-SMOKER code give cross sections based on Hauser-Feshbach models (similar to those used in models where experimental information is not available)
- Measurements at lower energies are needed for x-ray burst models

$p(^{37}K,^{34}Ar)\alpha$ Results (PRELIMINARY)

²⁹P beam development and preliminary p(²⁹P,²⁶Si)α run (June 2010)

Summary and Future Plans

- ³⁰S(α, p)³³Cl reaction rate affects
 - nucleosynthesis in XRBs
 - the energy output of XRBs
 - the luminosity of double-peaked XRBs
- ${}^{34}Ar(\alpha, p){}^{37}K$ and ${}^{26}Si(\alpha, p){}^{29}P$ is also a possible waiting point that may affect the double-peaked structure of luminosity profiles
- Radioactive ²⁹P, ³³Cl and ³⁷K beams have been produced at ATLAS
- Inverse kinematic studies of (α, p) reactions has been successfully completed using the Enge SplitPole Spectrograph and cross sections for three energy points have been measured for the ³⁰S(α, p)³³Cl and ³⁴Ar(α, p)³⁷K reactions; One energy point for the ²⁶Si(α, p)²⁹P reaction, which is currently being studied
- More energy points, in the astrophysical range, should be measured in the future
- Measurements of other waiting point nuclei ²²Mg
- Direct (α , p) measurements using HELIOS with a gas target...?

Thank You!!

- ANL
 - Martin Alcorta
 - Peter Bertone
 - Jason Clark
 - John Greene
 - Calem Hoffman
 - Cheng-Lie Jiang
 - Ben Kay
 - Hye-Young Lee
 - Richard Pardo
 - Ernst Rehm
 - Claudio Ugalde
 - Gary Zinkann

- Colorado School of Mines/ANL
 - Nidhi Patel (graduate student)
- Western Michigan University
 - Shad Bedoor (graduate student)
 - John Lighthall (graduate student)
 - Scott Marley (graduate student)
 - Dinesh Shetty
 - Alan Wuosmaa
- TANDAR Laboratory, Argentina
 - Juan Manuel Figueira (graduate student)
- Hebrew University, Israel
 - Michael Paul