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.Type I X-'Ray Bursts (XRBS)I
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Triple-a process to form 12C
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= Rapid proton-capture process (rp - process)
— Series of (p,y) reactions and p* - decays

: *  (a,p) - process
ne . — Sequence of (a,p) and (p,y) reactions

= Reach nuclei far from stability, close to the proton-drip
line



Waiting points in XRBs

Potential waiting points in XRBs
(Fisker, Schatz, Thielemann, ApJ SS 2008):

— 22Mg
— ZGSi
— 305
— 34Ar

At lower temperatures, nuclei
with low (p,y) Q values come into

(py) - (,p) equilibrium

If the (a,p) reaction rate is weak
OR if the temperature is too low
to overcome the Coulomb barrier
for the (¢, p) process, nuclear
flow must await (T, =

few seconds) before continuing
on

31C1 3%1 |
.7
0g Mg
28 p 30P




Waiting Point Effects

= Waiting points can affect the = Luminosity profile can be affected

nucleosynthetic path

Table 19.  Summary of the most influential mclear processes, as collected from Tables
1-10. These reacticns affect the yields of, at least, 3 isctopes when their nominal rates ar

— Composition of neutron star

surface —» affects observables

Table 20. Nuclear processes affecting the total energy cutput by mere than 5%, as well as

varied by a factor of 10 up and/or down. See text for details. the vield of at least one isctope, when their nominal rates are individually varied by a
factor of 10 up and/or down, for the given model. See text for details,
Reaction Meodels affectad
120, 40 Fog, Ko4-B2, Kod-B4, K04 BS Reaction Models affected
ENa(a, p)* Na® Kog-E1®
K04-B5 B(a, 4PN K04, Kod-Bl1, Kod-Ba
o {\lia,_};:n Si Fos BNaja, p)'Na*  Koe-Bl, Kod-Bi
ms".ﬂ' Pl g;c.l ;\.M'Bs EMela, p)¥Al Fis
04-B4 o e 5
Koa-Ba®, Ko4-B5P ‘Allp, ™8 Kn4-B1
A0 (p, PRAT Knd-B1 HMala, piTAR Ko4-B2
28, ) FAT Koa-Bz Bap i, )G Fis
Ni(a, p)™Cu S01°, Ko4-Bs gy P p.rg',P, K04B4
S Cu(p, 1)58%n Fos |2, pf |
B Cup, )" En S01°, Kid-Bs _ Ko4-B4, Kog-B5
S Gaip, 7120 Fos, Kod-B1, Kod-B2, Kod-Bs, Ko4-B6 AC0(p, )2 Ar Kn4-Ba
=Aa(p, 7)™8e  Ko4", Kod-Bl, Ko4-B2", Koa-Ba® | Kod-Ba, Kod-Bs, Ko4-Be 25, pi=Cl Ko4-B2
SRr(p, 1) Kr Kod-B7 LT (] -
TERbip, )78 Ko4-B2 Eed,';p’ «,_!Wm‘ I‘D,‘"BE
=Zr(p, 1)¥Nb Ko04-Ba Nijex, p)™Cu S0l
HZr(p, 1)FNb Ko4-B2 B Cu(p, 1)9%n 801
:NbiP- "ri':M° Ko4-Be Baa(p, v1¥8 K4, Knd-B2, Kod-Ba
Moip, )% Te Fuos e 4T ]
Moip, 4 Te Fos, Koa-Bo ﬂBn:p, ";'ﬂKr _501 "
Thfo(p, 115 Te KndiBs MBr(p, 11™Kr Kod-B7
(p. 7)®Rh Koa4-Bz2, Koa-Bo 88 ar, p)* Sk &l
(P, 1)MPd Ko4-B2
(P, )"0 o4, Kod4-B2, Ko4-B3, Kod-B7
(p. 7)™ Kod, Ko4-B3 “Reaction experimentally constrained to better than a factor of ~10 at XEB temperatures,
18 np, 1)1 ™Sn Ko4-Ba, Kod-BT See Secticn 5.
1 Sn) a, p)*Sh So1P

v
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due to pause in energy output as

— Final elemental abundances process pauses at waiting point

Energy output during burst — Leads to observed double-
peak luminosity profiles
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Reaction Rates in XRBs

Current models and studies are based on theoretical Hauser-
Feschbach reaction rates > Almost no experimentally obtained
information is known

— NIC_XI_366, NIC_XI 098
= O'Brien et al., AIP Conf. Proc. 2009

Given the current limitations of radioactive beam facilities most
rpo- and a, p-process reactions are inaccessible

Radioactive beams close to stability can be produced at ATLAS via
the “in-flight” technique

Studied (a,p) reactions on potential waiting points using time-
inverse and inverse kinematic reactions:

— p(>°P,25Si) o
_ p(33Cl,3°S)a
_ pCG7K,3*Ar)a



Experimental Setup

Beams produced by ATLAS
— Stable beam produced in ECR
source and accelerated
— Radioactive ion beam (RIB)
produced via “in-flight” technique
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Reaction products detected in coincidence
— a-particles detected in Double-Sided Si Detector (DSSD)

— Heavier reaction products separated by Enge SplitPole Spectrograph used in
gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and
ionization chamber at focal plane of spectrograph
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“In-Flight” Technique

rezonator

Stable Beam \ (3as
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= Examples: ¢He, "Be, 8Be, 8Li, !1C, 14O, 16N, 17F, 20.2INgq, 25A|, 2?P, 33Cl, and 37K

= 32§13+ stable primary beam
= Gas cell filled with deuterium

= 325(d,n)33Cl produces 33C|7+ radioactive beam
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Experimental Setup

Beams produced by ATLAS
— Stable beam produced in ECR
source and accelerated
— Radioactive ion beam (RIB)
produced via “in-flight” technique
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Reaction products detected in coincidence
— a-particles detected in Double-Sided Si Detector (DSSD)

— Heavier reaction products separated by Enge SplitPole Spectrograph used in
gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and
ionization chamber at focal plane of spectrograph

Spectrograph
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Experimental Setup

Beams produced by ATLAS
— Stable beam produced in ECR
source and accelerated
— Radioactive ion beam (RIB)
produced via “in-flight” technique
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Reaction products detected in coincidence
— oa-particles detected in Double-Sided Si Detector (DSSD)

— Heavier reaction products separated by Enge SplitPole Spectrograph used in

gas-filled mode and detected in Parallel Grid Avalanche Counter (PGAC) and
ionization chamber at focal plane of spectrograph
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Experimental Setup

Beams produced by ATLAS
— Stable beam produced in ECR
source and accelerated
— Radioactive ion beam (RIB)
produced via “in-flight” technique
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Rotatable
arm

Reaction products detected in coincidence
— a-particles detected in Double-Sided Si Detector (DSSD)

— Heavier reaction products separated by Enge SplitPole Spectrograph
used in gas-filled mode and detected in Parallel Grid Avalanche Counter
(PGAC) and ionization chamber at focal plane of spectrograph
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—=
Proof of Principle with stable beam reactions: *'**
p(*S,*P)a

Using the same setup the
p3S,3%P)a reaction was
studied with a stable 33§
beam

Gating on the 3°P-q«
coincidences and particle
groups gives clear
kinematic curves

Data shown for multiple
energy points

Blue curves represent
kinematic simulations
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p(33Cl,30S)a Results:
Simulations vs. Experiment

Monte Carlo Kinematic Simulation
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p(33Cl,3%S)a Results

Normalized via
—  Rutherford scattering

— Direct beam
measurements in
spectrograph

—  Two methods agree
within 10%

Measurements made at three
different energy points

NON-SMOKER code give cross
sections based on Hauser-
Feshbach models (similar to
those used in models where

experimental information is not

available)

Measurements at lower energies

are needed for x-ray burst
models
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p(37K,3*Ar)a
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9P beam development and preliminary
p(%°P,%Si)a run (June 2010)
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Summary and Future Plans

= 30S(a,p)33Cl reaction rate affects
— nucleosynthesis in XRBs
— the energy output of XRBs
— the luminosity of double-peaked XRBs

= 3*Ar(a,p)?’K and 2¢Si(a,p)?°P is also a possible waiting point that may affect the
double-peaked structure of luminosity profiles

= Radioactive %°P, 33C| and 3*’K beams have been produced at ATLAS

= Inverse kinematic studies of (a,p) reactions has been successfully completed using
the Enge SplitPole Spectrograph and cross sections for three energy points have
been measured for the 3°S(«,p)*3Cl and 3*Ar(a,p)3’K reactions; One energy point for
the 26Si(a, p)?°P reaction, which is currently being studied

= More energy points, in the astrophysical range, should be measured in the future
= Measurements of other waiting point nuclei 22Mg

= _Direct (a,p) measurements using HELIOS with a gas target...?
20



Thank You!!

= ANL
— Martin Alcorta
— Peter Bertone
— Jason Clark
— John Greene
— Calem Hoffman
— Cheng-Lie Jiang
— Ben Kay
— Hye-Young Lee
— Richard Pardo
— Ernst Rehm
— Claudio Ugalde
— Gary Zinkann

Colorado School of Mines/ANL
— Nidhi Patel (graduate student)

Western Michigan University

— Shad Bedoor (graduate student)
— John Lighthall (graduate student)
— Scott Marley (graduate student)
— Dinesh Shetty

— Alan Wuosmaa

TANDAR Laboratory, Argentina
— Juan Manuel Figueira (graduate student)

Hebrew University, Israel
— Michael Paul

**ATLAS staff and operators™*
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