First Measurement of the ⁶⁴Ni(γ,n)⁶³Ni Cross Section

Iris Dillmann

II. Physikalisches Institut, Justus-Liebig Universität Giessen GSI Helmholtzzentrum für Schwerionenforschung Physik Department E12, E15, und Excellence Cluster Universe, TU München Institut für Kernphysik, Karlsruhe Institute of Technology

and the FZK-FZD-TUM collaboration

The FZK-FZD-TUM Collaboration

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Franz Käppeler Stephan Walter

Martin Erhard INFN, Sezione di Padova, Italy Arnd R. Junghans Chithra Nair Ronald Schwengner Andreas Wagner

Georg Rugel Thomas Faestermann Gunther Korschinek

Johannes Lachner Labor f. Ionenstrahlphysik, ETH Zürich Moumita Maiti Saha Institute of Nuclear Physics, Chemical Sciences Division, Kolkata, India Michail Poutivtsev

...and our theoretical friends:

Marco Pignatari

Victoria University, BC, Canada JINA, University of Notre Dame, IN, USA TRIUMF, BC, Canada Thomas Rauscher Departement Physik, Universität Basel

Alberto Mengoni ENEA Bologna

The weak s process and its branching points

Branching ratio

Branching ratio

 $f_{\beta} \sim 0$: neutron capture $f_{\beta} \sim 1$: beta decay

Branchings can be

- neutron density monitors or
- stellar thermometers

But: temperature-dependence of $t_{1/2}$ and cross section should be known!

⁶³Ni: first branching ⇒ low cross section, bottleneck!

Propagation effects

Weak s-process

No equilibrium ($\sigma \cdot N_s \neq \text{const.}$): sensitive to low xs (<150 mb) \Rightarrow "**propagation effects**" up to A~90 ${}^{60}Ni(n,\gamma):$ -16% (Corvi et al, 2002)

⁶²Ni(n,γ): +88% (Nassar et al. 2005, Walter 2008, Alpizar-Vicxente et al. 2008)

⁶³Cu(n,γ): -40% (Heil et al. 2008) ⁶⁵Cu(n,γ): -27% (Heil et al. 2008)

NIC XI Heidelberg I. Dillmann

Reaction paths

During core He burning: mean $n_n = 1.1 \cdot 10^6$ cm⁻³

- f_{β} =0.91 $\Rightarrow \beta$ -decay to ⁶³Cu
- Change in ${}^{63}Ni(n,\gamma){}^{64}Ni$ MACS has **no influence**

Reaction paths

During shell C burning: mean $n_n = (2.0 - 50) \cdot 10^{11} \text{ cm}^{-3}$

- f_{β} =0.02 \Rightarrow ⁶³Ni(n, γ)⁶⁴Ni dominates and has influence on reaction flow
- ⁶³Cu produced (significantly) by radiogenic decay
- Amount of ⁶³Cu depedent on ⁶³Ni(n,γ) cross section (low: bottleneck)

Influence on production of ^{63,65}Cu

1: Standard case 2: constant T 3a: C shell burning T=1.0 GK 3b: C shell burning T=1.1 GK 4: ²²Ne(α,n)²⁵Mg (NACRE) 5a,b: New MACS of 63,65 Cu 6a: 63 Ni(n, γ) 64 Ni: MACS *2 6b: 63 Ni(n, γ) 64 Ni: MACS :2 7a,b: t_{1/2}(63 Ni) *2 and :2 8a,b: MACS of 64 Cu(n, γ) *2 and :2 9: Solar abundances by Lodders (2003)

"The ⁶³Ni(n, γ)⁶⁴Ni MACS is crucial for the s abundance of ⁶³Cu... An experimental determination of the ⁶³Ni MACS is required for a further improvement of the abundance prediction of copper."

Theoretical predictions: $^{63}Ni(n,\gamma)$ and $^{64}Ni(\gamma,n)$

Stellar neutron capture cross section at kT=30 keV

Bao et al. comp. (2000): Woosley (1978): NON-SMOKER (2000): MOST (2005): $\langle \sigma \rangle_{30 \text{keV}} = 31$ (6) mbarn $\langle \sigma \rangle_{30 \text{keV}} = 24$ mbarn $\langle \sigma \rangle_{30 \text{keV}} = 34$ mbarn $\langle \sigma \rangle_{30 \text{keV}} = 42$ mbarn

NIC XI Heidelberg I. Dillmann

Experimental status $^{63}Ni(n,\gamma)$ and $^{64}Ni(\gamma,n)$

Ni 63	Ni 64
100 a	0,926
β 0,07 no γ π 24	o 1.5

- Thermal cross section: σ_{th} =24.4 ± 3.0 barn
- "Stellar" cross section:

TOF measurement at DANCE in Los Alamos performed in November 2009, analysis in progress

Photodissociation:

NO DATA!

Activation: ⁶⁴Ni(γ,n)⁶³Ni at ELBE

concrete shielding Electron electron 1 m photoactivation beam site (Mo/Sm+197Au) Linac of high dump photon scattering Brilliance and low purging magnet site ("B+197Au) Pb walls Emittance γ beam electron γ beam at FZ Dresdenbeam dump deuteron Rossendorf collimator breakup steering target radia tor magnets HPGe+BGO Vacuum vessel Al- rod Iron plug Enriched ⁶⁴Ni samples Graphite • 3 activations: $E_0 = 10.3 \text{ MeV} (84h)$, Beryllium window 11.5 MeV (17h), and 13.4 MeV (18h) • Photon flux: $\Phi_{\gamma} \sim 10^{10} \text{ s}^{-1} \text{ cm}^{-2} \text{ MeV}^{-1}$ Endpoint energy via D breakup Electron • Absolute photon flux via ${}^{11}B(\gamma,\gamma')$ beam • Relative photon flux via $^{197}Au(\gamma,n)$ Iron shieldina Target Al- tube

Measurement: ⁶³Ni at the AMS facility in Garching

14 MV MP Tandem + GAMS: Ultrasensitive detection of long-lived radionuclides

⁶³Ni/Ni ratios down to 10⁻¹⁴
 Suppression factor of stable ⁶³Cu: 10⁹
 Cu 63

 69,17

Isobaric separation in Gas-filled Analyzing Magnet System

Detection in multi- ΔE ionization chamber

Preliminary results: ⁶⁴Ni(γ,n)⁶³Ni

Sample 1 (E₀= 13.4 MeV): ⁶³Ni/⁶⁴Ni= **(1.5 ± 0.4)·10⁻¹²**

previous measurement: ${}^{63}Ni/{}^{64}Ni = (1.1^{+0.5} {}_{-0.4}) \cdot 10^{-12}$

Ph.D. thesis S. Walter, Universität Karlsruhe (2008)

Background = $8.1 \cdot 10^{-14}$

Sample 2 (E₀= 11.5 MeV): ⁶³Ni/⁶⁴Ni = **(3.7 ± 2.1)·10⁻¹³**

Background < 1.35-10⁻¹³

Sample 3 (E_0 = 10.3 MeV): analysis in progress Background ~10⁻¹²

July 21st 2010

Preliminary results: ⁶⁴Ni(γ,n)⁶³Ni

First time combination of photoactivation and AMS

First measurement of ⁶⁴Ni(γ,n)⁶³Ni cross section

What can we deduce for $^{63}Ni(n,\gamma)$?

Experimental information from the (γ, n) on ⁶⁴Ni is still valuable because the HFSM calculation need to be normalized

⁶³Ni(n,γ)⁶⁴Ni: What we knew before

⁶⁴Ni(γ,n)⁶³Ni: What we have measured

How theory can help us

But the full picture needs the direct way: $^{63}Ni(n,\gamma)$

If ${}^{63}Ni(n,\gamma){}^{64}Ni$ is lower than predicted...

Consequences for the weak s-process reaction flow

- During core He burning: no influence (β -decay to 63 Cu)
- During shell C burning:

• Lower ${}^{63}Ni(n,\gamma){}^{64}Ni \Rightarrow$ another bottleneck, influence on all heavier

isotopes up to A=90 (propagation effect)

 \Rightarrow More ⁶³Cu and less ⁶⁵Cu:

if ⁶³Ni(n,γ) :2

July 21st 2010

Activation yield

Solar ⁶³Cu and ⁶⁵Cu

* Only 25 M_{\odot} star