Extended energy density functionals and ground-state correlations in nuclei

Jacek Dobaczewski University of Warsaw & University of Jyväskylä

11th Symposium on Nuclei in the Cosmos Heidelberg, 19-23 July 2010

1/27

What is DFT?

Density Functional Theory:

A variational method that uses observables as variational parameters.

$$egin{aligned} &\delta \langle \hat{H} \ &- \lambda \hat{Q}
angle &= 0 \ & \Downarrow \ & E \ & = E(Q) \end{aligned}$$
 for $E(\lambda) \equiv \langle \hat{H}
angle & ext{ and } Q(\lambda) \equiv \langle \hat{Q}
angle$

Which DFT?

$$\delta \langle \hat{H} - \lambda \hat{Q}
angle = 0 \implies E = E(Q)$$
 .

$$\delta \langle \hat{H} - \sum_k \lambda_k \hat{Q}_k
angle = 0 \implies E = E(Q_k)$$

$$\delta \langle \hat{H} - \int \! \mathrm{d} q \, \lambda(q) \hat{Q}(q)
angle = 0 \implies E = E[Q(q)]$$

$$egin{aligned} \delta \langle \hat{H} - \int & \mathrm{d}ec{r} \,\lambda(ec{r}) \hat{
ho}(ec{r})
angle = 0 \implies E = E[
ho(ec{r})] \ & \mathrm{for} \quad \hat{
ho}(ec{r}) \ = \ \sum_{i=1}^A \delta(ec{r} - ec{r}_i) \end{aligned}$$

$$\delta \langle \hat{H} - \iint dec{r} dec{r} dec{r}' \lambda(ec{r},ec{r}') \hat{
ho}(ec{r},ec{r}')
angle = 0 \implies E = E[
ho(ec{r},ec{r}')]$$

- **1) Exact:** Minimization of E(Q) gives the exact E and exact Q
- Impractical: Derivation of E(Q) requires the full variation δ (bigger effort than to find the exact ground state)
- **3) Inspirational:** Can we build useful models E'(Q) of the exact E(Q)?
- **4) Experiment-driven:** E'(Q) works better or worse depending on the physical input used to build it.

Nuclear Energy Density Functionals

Neutrons in external Woods-Saxon well

NIC XI

Collaboration

UNEDF

Applications

Ν

Nuclear binding energies (masses)

Hamiltonian approach.

lacek Dobaczewsk

and neutron matter.

120

140

12/27

2009 152503 102 ett. Rev. et Goriely 5

160

First 2⁺ excitations of even-even nuclei

Spontaneous fission

Collective states in even-even nuclei

Giant resonances in deformed nuclei

Iterative methods to solve (Q)RPA

17/27

NIC X

Time-dependent solutions

Nuclear Energy Density Functional

We consider the EDF in the form,

$${\cal E}=\int\!\!d^3r{\cal H}(r),$$

where the energy density $\mathcal{H}(r)$ can be represented as a sum of the kinetic energy and of the potential-energy isoscalar (t = 0) and isovector (t = 1) terms,

$$\mathcal{H}(r)=rac{\hbar^2}{2m} au_0+\mathcal{H}_0(r)+\mathcal{H}_1(r),$$

which for the time-reversal and spherical symmetries imposed read:

$$\mathcal{H}_t(r) = C_t^
ho
ho_t^2 + C_t^ au
ho_t au_t + C_t^{\Delta
ho}
ho_t \Delta
ho_t + rac{1}{2} C_t^J J_t^2 + C_t^{
abla J}
ho_t
abla \cdot J_t.$$

Following the parametrization used for the Skyrme forces, we assume the dependence of the coupling parameters C_t^{ρ} on the isoscalar density ρ_0 as:

$$C^
ho_t = C^
ho_{t0} + C^
ho_{t\mathrm{D}}
ho_0^lpha.$$

The standard EDF depends linearly on 12 coupling constants,

$$C^{
ho}_{t0}, \hspace{0.2cm} C^{
ho}_{t\mathrm{D}}, \hspace{0.2cm} C^{ au}_t, \hspace{0.2cm} C^{\Delta
ho}_t, \hspace{0.2cm} C^{\mathrm{J}}_t, \hspace{0.2cm} ext{and} \hspace{0.2cm} C^{
abla \mathrm{J}}_t,$$

for t = 0 and 1.

Derivatives of higher order: Negele & Vautherin density matrix expansion

\mathbf{Nr}	Tensor	order n	rank L	\mathbf{Nr}	Tensor	order n	rank L
1	1	0	0	1	1	0	0
2	∇	1	1	2	$m{k}$	1	1
3	Δ	2	0	3	k^2	2	0
4	$[\mathbf{ abla} \mathbf{ abla}]_2$	2	2	4	$[kk]_2$	2	2
5	$\Delta \nabla$	3	1	5	k^2k	3	1
6	$[oldsymbol{ abla} [oldsymbol{ abla} \nabla [oldsymbol{ abla}]_2]_3$	3	3	6	$[k[kk]_2]_3$	3	3
7	Δ^2	4	0	7	$(k^2)^2$	4	0
8	$\Delta [oldsymbol{ abla} abla]_2$	4	2	8	$k^2[kk]_2$	4	2
9	$[oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla}]_2]_3]_4$	4	4	9	$[k[k[kk]_2]_3]_4$	4	4
10	$\Delta^2 abla$	5	1	10	$(k^2)^2k$	5	1
11	$\Delta [oldsymbol{ abla} [oldsymbol{ abla} \nabla [oldsymbol{ abla}]_2]_3$	5	3	11	$k^2[k[kk]_2]_3$	5	3
12	$[oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla} [oldsymbol{ abla}]_2]_3]_4]_5$	5	5	12	$[k[k[kk]_2]_3]_4]_5$	5	5
13	Δ^3	6	0	13	$(k^2)^3$	6	0
14	$\Delta^2 [oldsymbol{ abla} abla]_2$	6	2	14	$(k^2)^2[kk]_2$	6	2
15	$\Delta [abla [abla [abla [abla \nabla [abla]_2]_3]_4$	6	4	15	$k^2[k[k[kk]_2]_3]_4$	6	4
16	$[\nabla [\nabla [\nabla [\nabla [\nabla \nabla]_2]_3]_4]_5]_6$	6	6	16	$[k[k[k[kk]_2]_3]_4]_5]_6$	6	6
Fota	al derivatives $(ec{ abla}^m)_I$ up	to N ³ LO		Rela	ative derivatives $(ec{k}^n$) _L up to $]$	N ³ LO
	${f abla}={f abla}$	$V_1 + \nabla_2$	$_2, k =$	$=\frac{1}{2i}(\mathbf{N})$	$(\overline{\pmb{\nabla}}_1-\overline{\pmb{\nabla}}_2),$		
	$ ho_{v=0} =$	$ ho(r_1,r_2)$	$(r_2), ho$	$v_{v=1} =$	$=ec{s}(r_1,r_2),$		
7 =	$=\left((ec{k}^n)_L ho_v ight)_J$ (prin	nary), <i>f</i>	OmInLvJ0	$q_{2} = (0)$	$(ec{ abla}^m)_Iig((ec{k}^n)_L ho)$	$_{\boldsymbol{v}}\Big)_{\boldsymbol{J}}\Big)_{\boldsymbol{Q}}$ (s	second
baczewski	- Stiversize		and the second second			UDELBE I P	Red T

 ρ_{n}

Jacel

IFT III VA

NIC XI

Numbers of terms in the density functional up to N³LO

22/27

NIC X

Challenges

Collectivity

beyond mean field, ground-state correlations, shape coexistence, symmetry restoration, projection on good quantum numbers, configuration interaction, generator coordinate method, multi-reference DFT, etc....

$$E = \langle \Psi | \hat{H} | \Psi \rangle \simeq \iint d\vec{r} d\vec{r}' \mathcal{H}(\rho(\vec{r}, \vec{r}'))$$

True for
mean field

$$\langle \Psi_1 | \hat{H} | \Psi_2 \rangle \simeq \iint d\vec{r} d\vec{r}' \mathcal{H}(\rho_{12}(\vec{r}, \vec{r}'))$$

for $\rho_{12}(\vec{r}, \vec{r}') = \frac{\langle \Psi_1 | a^+(\vec{r}') a(\vec{r}') | \Psi_2 \rangle}{\langle \Psi_1 | \Psi_2 \rangle}$

Extensions

I. Range separation and exact long-range effects $\mathcal{H}(\rho) = \mathcal{H}_{\text{long}}(\rho) + \mathcal{H}_{\text{short}}(\rho)$ **II.** Derivatives of higher order: $\mathcal{H}(
ho) = \mathcal{H}(
ho, au, au_4, au_6, \Delta
ho, \Delta^2
ho, \Delta^3
ho, \ldots)$ **X** III. Products of more than two densities: $\mathcal{H}(\rho) = \mathcal{H}(\rho^2, \rho^3, \tau^2, \tau^3, \rho\tau, \rho^2\tau, \ldots)$

Synopsis and take-away messages

Nuclear EDF methods:

- provide us with universal understanding of global low-energy nuclear properties and feature an impressive array of applications.
- may be rooted in the effective-theory approach whereupon low-energy phenomena can be successfully modeled without resolving high-energy properties.
- strongly rely upon and use the continuous progress in high-power computing.
- must be transformed from modeling to theory by working out consistent scheme of consecutive corrections that would allow for the increased precision and predictive power.

