Gamow-Teller strength distributions at finite temperatures and electron capture rates in stellar environment

<u>A. Dzhioev</u>^{1,2}, A. Vdovin¹, V. Ponomarev³, J. Wambach^{3,4}, K. Langanke^{3,4,5}, and G. Martínez-Pinedo⁴

¹Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

²Université Libre de Bruxelles, Belgium

³Institut für Kernphysik, TU Darmstadt, Germany

⁴GSI, Darmstadt, Germany

⁵Frankfurt Institute for Advanced Studies, Germany

11th Symposium on Nuclei in the Cosmos (NIC XI)

Heidelberg, Germany, July 19 – 23, 2010

A. Dzhioev et al (BLTP, JINR & ULB)

Gamow-Teller strength distributions ...

Motivation

Electron capture on nuclei during the core collapse

 $(A,Z)+e^- \rightarrow (A,Z-1)+\nu_e$

- Reduses the number of electrons (*Y_e*) and keeps the core cool;
- Decreases Chandrasekar mass $(M_{Ch} \approx 1.44(2Y_e)^2 M_{\odot})$;
- Dominated by Gamow-Teller transitions caused by the $\sigma \tau_+$ operator.

In stellar environments EC takes place at finite temperatures T = 0.2 - 2.0 MeV $(0.1 \text{ MeV} \approx 1.2 \times 10^9 \text{ K})$ and GT₊ distributions for nuclear excited states are needed.

EC rates are computed by:

- Shell-Model for A < 65;
- Hybrid model (SMMC+RPA) for A > 65.

GT₊ transitions at finite temperatures

The formalism

Basic ingredients of the Thermal QRPA (pnQRPA + TFD) approach:

- Thermo Field Dynamics
 - Thermal Hamiltonian: $\mathcal{H} = H \widetilde{H}$, where $H|n\rangle = E_n|n\rangle$ and $\widetilde{H}|n\rangle = E_n|\widetilde{n}\rangle$;
 - Thermal vacuum: $\mathcal{H}|0(T)\rangle = 0$ and $\ll A \gg = \langle 0(T)|A|0(T)\rangle$;
- The QPM Hamiltonian: $H = H_{W.S.} + H_{BCS} + H_{ph}$.

Diagonalization of \mathcal{H} within TQRPA:

Thermal quasiparticles:

Thermal phonons:

$$\mathcal{H} pprox \sum_{k\lambda} \omega_{k\lambda} (\boldsymbol{Q}_{k\lambda}^{\dagger} \boldsymbol{Q}_{k\lambda} - \boldsymbol{Q}_{k\lambda}^{\dagger} \boldsymbol{Q}_{k\lambda})$$

Transition strength: $S_{k\lambda} = \langle Q_{k\lambda}^{\dagger} | \hat{O}_{\lambda} | 0(T) \rangle$ and $S_{\widetilde{k\lambda}} = \langle \widetilde{Q}_{k\lambda}^{\dagger} | \hat{O}_{\lambda} | 0(T) \rangle$.

Iron group nuclei are essential at the early presupernova collapse, T = 0.2 - 0.8 MeV and $\rho = 10^7 - 10^{10}$ g cm⁻³.

The black arrows indicate the zero-temperature EC threshold $Q = M(^{54}\text{Fe}) - M(^{54}\text{Mg}) = 1.21 \text{ MeV}.$

Electron capture rates for ⁵⁴Fe

 $\lambda^{ec} = \frac{\ln 2}{6150s} \sum_{i} S_i (GT_+) F_i,$

 $T_9 = 10^9$ K; density ρY_e in g cm⁻³.

Strength distributions of GT₊ transitions in ⁷⁶Ge

- Neutron-rich nuclei with $N \ge 40$ and $Z \le 40$ dominate the nuclear composition for $\rho > 10^{10}$ g cm⁻³ and T > 0.8 MeV
- Unblocking mechanisms: thermal excitations and configuration mixing.

A. Dzhioev et al (BLTP, JINR & ULB)

Gamow-Teller strength distributions ...

Strength distributions of first-forbidden $p \rightarrow n$ transitions in ⁷⁶Ge

A. Dzhioev et al (BLTP, JINR & ULB)

 $\sigma(\boldsymbol{E}_{el},\boldsymbol{T}) = \frac{G_{w}}{2\pi} \boldsymbol{F}(\boldsymbol{Z},\boldsymbol{E}_{el}) \sum_{\lambda i} (\boldsymbol{E}_{el} - \boldsymbol{E}_{\lambda i})^{2} \boldsymbol{S}_{\lambda i}, \ \lambda = \mathbf{1}^{-}, \ \mathbf{0}^{+}, \ \mathbf{1}^{+}, \mathbf{2}^{+}.$

Summary and Outlook

- The novel approach to study thermal effects on the GT₊ strength distributions and electron captures on nuclei in stellar environment have been presented. It was shown that thermal effects shift GT₊ centroid to lower excitation energies and make possible negative- and low-energy transitions. It was found that the unblocking effect for GT₊ transitions in neutron-rich nuclei is more sensitive to increasing temperature than it was predicted by the hybrid model.
- To improve the predictive power of the approach it is desirable to combine our TFD-based method with self-consistent QRPA calculations based on more realistic effective interactions. Another direction is the inclusion of correlations beyond TQRPA by coupling one-phonon states with more complex configurations like it was done at zero temperature within the QPM.

Acknowledgments: This work is supported by the Heisenberg-Landau Program, the DFG grant (SFB 634), the Helmholtz Alliance EMMI and HIC for Fair.

A. Dzhioev et al (BLTP, JINR & ULB)