M. A. Famiano NIC XI Meeting July 20, 2010

EXPERIMENTAL APPLICATIONS OF THE NUCLEAR EQUATION-OF-STATE

Supported by NSF Grants #PHY-0757257, #PHY-0923087

Introduction

- Significance of the symmetry energy at low and high density
- Isotopic observables near saturation density
 - Neutron-proton ratios
 - Constraining parameters
 - Extrapolations: supra-saturation density
- Experimental plans
 - Exceeding nuclear saturation density

Symmetry Energy in Nature

Equation of state of asymmetric nuclear matter. $E/A (\rho, \delta) = E/A (\rho, 0) + \delta^2 \cdot S(\rho)$ $\delta = (\rho_n - \rho_p) / (\rho_n + \rho_p) = (N-Z)/A$ Symmetry energy $S(\rho)$ $S(\rho) = S_{kin} \cdot (\rho/\rho_0)^{2/3}$ $+ S_{int} \cdot (\rho/\rho_0)^{\gamma_i}$

$$P_{sym} = \rho^2 \frac{dE_{sym}(\rho)}{d\rho} \delta^2$$

Steeper slope means higher pressure.

Neutron Star Radius Depends on Stiffness

Macroscopic properties:

- Neutron star radii, moments of inertia and central densities.
- Maximum neutron star masses and rotation frequencies.
- Thickness of the inner crust.
 - Frequency change accompanying star quakes.
- Role of Kaon condensates and mixed quark-hadron phases in the stellar interior.
- Proton and electron fractions throughout the star.
 - Cooling of proto-neutron star.

Asymmetric Nuclear Matter

	Stiff	Soft
ρ<ρ ₀	Less sensitivity to observables	More sensitivity to observables
ρ>ρ _ο	More sensitivity to observables	Less sensitivity to observables

Stiffness of symmetry energy Contained in parameter γ

Symmetry energy $S(\rho)$ $S(\rho) = S_{kin} \cdot (\rho/\rho_0)^{2/3} + S_{int} \cdot (\rho/\rho_0)^{\gamma_i}$

Spectral Ratios

- Neutron-Proton emission ratios at subsaturation densities
 - Pre-equilibrium emission in heavy-ion fragmentations
 - Less variation with δ in asy-stiff EOS than asy-soft EOS: Larger change = softer asymmetry
- Double ratios ${}_{1}R_{124}/{}_{1}R_{112}=(dn_{n}/dn_{p})_{124}/(dn_{n}/dn_{p})_{112}$
 - Independent of Coulomb and efficiency effects
 - More sensitive to "asy-soft" EOS at **subsaturation density**

Experimental Configuration

Experimental Results

- Beam: ^{112,124}Sn +^{112,124}Sn 50 MeV/A
- Neutron-proton observables
 - N/P ratios
 - Average rapidity dist.
 - N-P correlations?
- Sensitivity near saturation
- Data necessarily includes clustering ir exactly the right amounts

Current Landscape

Summary

- Recent progress in isotopic observables of the low-density asy-EOS: Many isotopic observables at low density
- Work towards expanding isotopic observables to the high-density asy-EOS
 - Ratios
 - Correlations
- Constraining theory: effective masses
- Equipment for the high-density asy-EOS

Astrophysical Importance of the Nuclear Asymmetry Term $E/A(\rho, \delta) = E/A(\rho, 0) + \delta^2 \cdot S(\rho)$ $\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) = (N-Z)/A$

- Macroscopic properties:
 - Neutron star radii, moments of inertia and central densities.
 - Maximum neutron star masses and rotation frequencies.
- Thickness of the inner crust.
 - Frequency change accompanying star quakes.
- Role of Kaon condensates and mixed quark-hadron phases in the stellar interior.
- Proton and electron fractions throughout the star.
 - Cooling of proto-neutron star.

$$S_{pot}(\rho) = const. \cdot F(u); u = \rho / \rho_0$$

Towards Higher Density

Isotopic observables

 Possible difficulties in <u>"freeze out" conditions?</u> Stiffer EOS favors symmetric Dense regions: More +: Lower π^{-}/π^{+} .

Softer EOS is less strongly Symmetric: Suppression of π^+ .

AT-TPC

	Density R
$\mathbf{\mathbf{b}}$	t/ ³ He production
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Pre-equilibrium nucleo
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Isospin fractionation
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Isoscaling
>	Isospin diffusion
\times	Neutron-proton correl:

SAMURAI Configuration

6/12/2003

Current Concept: Modification of EOS TPC.

SAMURAI Dipole Specifications			
Magnet Type	Н		
Maximum Rigidity	7 Tm		
Pole Diameter	2m		
Return Yoke Dimensions	6.8m x 3m x 1.4 m		
Top and Bottom			
Return Yoke Dimensions	1.7m x 0.7m x 1.88m		
Sides			
Central Field	0.4-3 T (at the center)		
Magnet Gap	0.88 m - 0.8 m with vacuum chamber		
Mounting	Rotatable Base		
Total Weight	630 T		