

Anna Frebel

Clay Fellow (OIR & ITC) Harvard-Smithsonian Center for Astrophysics

CHEMICAL EVOLUTION

FREBEL

.

All the atoms (except H, He & Li) were created in stars!

Pop III: zero-metallicity stars **Pop II: old halo stars** Pop I: young disk stars

We are made of stardust!

⇒ Old stars contain fewer elements (e.g. iron) than younger stars

We look for the stars with the **least amounts** of elements heavier than H and He (= extreme Pop II stars)!

HALO METALLICITY DISTRIBUTION FUNCTION (MDF)

What's in the non-zero tail?

REBEL

L

ANNA

.

METAL-POOR STARS

- ~130 stars stud ied with high-resolution so far
- r-process stars (talks by Sneden/Ishimaru/others)
- r+s process stars (talks by Karakas/Cristallo/others)
- really C-rich stars
- other crazy abundance patterns
- stars with [Fe/H]<-5.0

Schoerck et al. 2008

The most metal-poor stars are extremely rare but extremely important!

WHAT CAN WE LEARN FROM OLD HALO STARS?

Low-mass stars (M < 1 M $_{\odot}$) \Rightarrow lifetimes > 10 billion years

REBEL

Ē

ANNA

.

METAL-POOR STARS

 \Rightarrow unevolved stars are still around!

Using "fossil" metal-poor stars to reconstruct...

- ✓ Origin and evolution of chemical elements
- ✓ Relevant <u>nucleosynthesis processes</u> and sites
- ✓ Chemical and dynamical history of the Galaxy
- ✓ Lower limit to the age of the Universe

... and to provide constraints

- ✓ Nature of the first stars & initial mass function
- ✓ Nucleosynthesis & <u>chemical yields of first/early SNe</u>
- ✓ Early star & early galaxy formation processes
- Hierarchical merging of galaxies (observed abundances are 'end product' that have to be reproduced by any comprehensive galaxy formation model)
- ✓ Formation of the galactic halo by detailed understanding of its stellar content

Galactic metal-poor stars are a great tool for near-field cosmology because they are the local equivalent to the high-redshift Universe!

Hertzsprung-Russell-diagram

Temperature

TINY LITTLE IRON WIGGLES

High-resolution (R~60,000) Subaru/HDS spectrum (7h exposure time; taken by W. Aoki)

REBEL

L

ANNA

.

METAL-POOR STARS

Extremely weak iron absorption lines detected ⇒ "Hyper iron-poor" star

Record holder for the lowest Fe abundance observed in a star: => [Fe/H] = -5.4

"Advertisement":

A compilation of abundances of ~800 metal-poor stars with [Fe/H]~<-2.0 can be found at

www.cfa.harvard.edu/~afrebel/abundances/abund.html

(published in Frebel 2010, AN, review paper on metal-poor stars)

- shows what the different production channels are!

LEAD ABUNDANCE PREDICTION FOR R-PROCESS STARS

first "U" stac

total Pb from decay only: $\log \epsilon(Pb) = -0.72$

	t=0	t=13 Gyr	HE 1523-0901	CS31082-001
log(Th/U)	0.26	0.84	0.86	0.89
log(Th/Pb)	-1.327	-1.316	-0.85	-0.43
log(U/Pb)	-2.208	-2.161	-1.71	-1.32
log(Pb)	-0.426	-0.346	~-0.35	-0.55

Th-U-Pb in r-process metal-poor stars

"textbook" stars like HE1523 crucial for self-consistency tests of rapid nucleosynthesis via Th-U-Pb combo! But, the results are depending on

- r-process model calculations!
- also one the data and "star" quality

ANNA FREBEL

The ACDM universe

FREBEL

ANNA

CDM simulations of galaxy assembly show that **very few larger halos** plus **many smaller halos** merged to form the Galactic halo ("hierarchical growth").

Many small halos survive this process and are predicted to be around today.

The ACDM universe

FREBEL

ANNA

CDM simulations of galaxy assembly show that **very few larger halos** plus **many smaller halos** merged to form the Galactic halo ("hierarchical growth").

Many small halos survive this process and are predicted to be around today.

WHAT CAN WE LEARN FROM THE EXISTING DWARF GALAXIES?

ANNA FREBEL

METAL-POOR STARS

If surviving dwarfs are *analogs* of early MW building blocks then we should find chemical evidence of it!

Stellar metallicities [Fe/H] & abundances [X/Fe] of metal-poor stars in dwarf galaxies **should agree** with those found in the MW halo

Reminder: dwarf galaxies are SIMPLE systems so we deal with less chemical evolution/less yield superposition => we can better trace individual SNe yields and other nucleosynthetic details!

AN EXTREMELY METAL-POOR RED GIANT STAR IN SCULPTOR

Metal-poor stars in dwarf galaxies:

Stellar archaeology meets near-field cosmology

- early chemical evolution in early systems
- what are the building blocks of the Milky Way?

But, the results are heavily dependent on

- cosmological simulations of the first stars, first SN & first galaxies
- SN nucleosynthesis

FREBEL

ANNA

METAL-POOR STARS

- how the yields get dispersed (i.e. turbulence, mixing)

New [Fe/H] = -3.8 star in the classical dSph Sculptor (selected from Kirby et al. 2009) "Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor" Frebel, Kirby+Simon

2010b, Nature

LITTLE DIAMONDS IN THE SKY ...

ANNA FREBE

METAL-POOR STARS

"Metal-poor stars are a girl's best friend!"

Metal-poor stars are just like diamonds

- they are rare
- they last (almost) forever
- they are good for many

occasions/applications - they contain a lot of carbon

- they are difficult to come by
- they make you happy!

We have found many so just tell us what you need them for :)