Direct measurement of the ⁴He(¹²C,¹⁶O)γ cross section near stellar energy

Kunihiro FUJITA

K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano, N. Oba, M. Taniguchi and H. Yamaguchi

Department of Physics, Kyushu University, Japan Kyushu University Tandem Laboratory (KUTL)

Introduction

- ${}^{12}C/{}^{16}O$ ratio: after helium burning process
 - affects evolution of heavy stars supernova or white dwarf
 - abundance of element of universe
- Cross Section of ${}^{4}\text{He}({}^{12}\text{C},{}^{16}\text{O})\gamma$
 - very small ($\sim 10^{-8}$ nb) coulomb barrier
 - varies drastically around stellar energy(0.3MeV)
- Extrapolation with experimental data

¹⁶O measurement

- (1) ⁴He beam + γ measurement
- 2¹⁶N decay measurement
- **3** direct ¹⁶O measurement with ¹²C beam and ⁴He target
 - high efficiency (~ 40%: charge fraction)
 - total S-factor can be obtained
- necessary components for $E_{cm}=0.7$ MeV experiment
 - background separation system: N_{BG}/N_{12C} ratio of 10^{-19}
 - thick gas target : ~25 Torr x 3 cm
 - high intensity beam: ~ 10 pµA
- $Y(^{16}O) \sim 5$ counts/day

 \rightarrow 1 month experiment for 10% error

Experimental Setup

• Layout of Kyushu University Tandem Laboratory (KUTL)

Windowless Gas Target

- Blow-In Gas Target (BIGT) windowless & high confinement capability He in beam beam **RMS** *\$*2.5 mm ¢4.3 mm beam (TM MP5 520 350 l/s 4.5cm SSD: beam monitor D e view)
- center pressure: 24 Torr post stripper is not necessary
- effective length: 3.98 ± 0.12 cm (measured by p+α elastic scattering)
 → target thickness is sufficient for our experiment (limited by energy loss of ¹²C beam)

BG Reduction and ¹⁶O Detection

- Recoil Mass Separator
 - ¹²C/¹⁶O separation : ratio of 10⁻¹¹
 - angular acceptance: ±1.9deg
 100% ¹⁶O can be observed
- Background ¹²C
 - charge exchange
 - multiple scattering
 - p/q value is nearly equal to ¹⁶O
- Background reduction
- ① RF deflector (Long-Time Chopper)
 - background reduction ~10⁻³
- (2) movable slits
 - combination with trajectory analysis

Trajectory Analysis

E_{cm}=2.4MeV experiment

- beam: ${}^{12}C^{2+}$, frequency: 6.063MHz
 - energy: 9.6MeV , intensity: ~35pnA
- target: ⁴He gas ~ 23.9 Torr x 3.98 cm
- observable: ${}^{16}O^{5+}$ 7.2 ± 0.3 MeV
 - abundance = $36.9 \pm 2.1 \%$ = efficiency

E_{cm}=1.5 MeV experiment

- beam: ${}^{12}C^{1+}$, frequency: 3.620MHz
 - energy: 6.0MeV, intensity: ~150pnA
- target: 4 He gas ~ 15.0 Torr x 3.98 cm
- observable: ${}^{16}O^{3+}$, $4.5 \pm 0.3 \text{ MeV}$
- abundance = $40.9 \pm 2.1 \%$ = efficiency

Cross Section and S-factor

- Our data (2009, 2010)
- D. Schurmann et al. Eur. Phys. J. A **26**, 301-305 (2005)

• 2.4MeV

 $\sigma = 64.6 \pm 2.7 \text{ nb}, \quad S(2.4) = 89.0 \pm 3.8 \text{ keV} \cdot \text{b}$

• 1.5MeV

- $\sigma \sim 1.0 \,\mathrm{nb}, \, \mathrm{S}(1.5) \sim 30 \,\mathrm{keV} \cdot \mathrm{b}$

- need much more statistics
- background reduction is not sufficient

Summary

- Direct ¹⁶O measurement via ⁴He(¹²C, ¹⁶O)γ reaction was proposed to determine ¹²C/¹⁶O abundance ratio in stars
- Blow-in type windowless gas target was developed, and thickness of 24 Torr x 3.98 cm was achieved
- Background reduction was performed by using RMS, RFdeflector and movable slits
- $E_{cm} = 2.4$ MeV experiment
 - $-\sigma = 64.6$ nb, S-factor = 89.0 keV b
- $E_{cm} = 1.5$ MeV experiment
 - $\sigma \sim 1.0$ nb, S-factor ~ 30 keV b
 - need much more statistics, and background reduction

BACKUP

Charge State Fraction of 160

Our data
 W. Liu *et al.* / Nucl. Instr. and Meth. A 496 (2003) 198–214

¹²C beam

- TOF information is needed for background rejection
- pulsed beam: buncher, chopper

At low acceleration voltage, focusing becomes weak, and beam transmission decreases.

By alternative focus-defocus, Focusing becomes strong, and Beam transmission increases.

By the accel-decel operation,

- •<u>10 times higher beam transmission</u> is obtained by strong focusing.
- •<u>17.5 times more intense beam can be injected</u>, due to higher electric power necessary for accel-decel operation.
- By a large aperture (12^f) gas stripper, spread in beam energy and angle is decreased, and <u>beam transport to the target is ~3 times increased.</u>

Totally, beam intensity is 300-500 times increased.

RF-Deflector (Long Time Chopper)

pass only reaction products (¹⁶O) which are spread in time.

