An Inconvenient Truth? The low r-process fraction in the metal-poor subgiant star HD 140283

Andy Gallagher

Sean Ryan, Ana Elia Garcia Perez, Wako Aoki

Email: a.gallagher@herts.ac.uk

The r-/s-process controversy My research

The isotopic fraction – implications of the result

Abundances calculated in the analysis

Shortcomings of 1D LTE codes – asymmetries in absorption lines

Introduction

The controversy

Barium Isotopes

HD 140283 analysis

The r-/s-process Controversy

Introduction

The controversy

Barium Isotopes

HD 140283 analysis

Truran (1981) hypothesised that neutron capture elements in older populations of stars should be dominated by r-process material.

As metallicity decreases, heavier elemental abundances should be the result of the r-process not the s-process due to neutron capture timescales.

e.g. barium & europium can all be formed by both processes but should be dominated by r-process as there is a lack of iron seeds in primordial stars.

Work by Magain (1995) on barium isotopes in HD 140283 found it to be an s-process star. Lambert et al. (2002) and Collet et al. (2009) found the star to be r-process rich.

Barium Isotopes

134Ce

3.16 D

e: 100.00%

135Ce

17.7 H

e: 100.00%

136Ce

>0.7E+14 Y

0.185%

137Ce

9.0 H

e: 100.00%

138Ce

≥0.9E+14 Y

0.251%

2e: 100.00%

139Ce

137.641 D

e: 100.00%

140Ce

STABLE

88.450%

141Ce

32.508 D

β-: 100.00%

132Ce 3.51 H

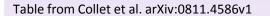
e: 100.00%

r & s

133Ce

97 M

e: 100.00%


There are 5 stable isotopes of barium, some of which are pure s-process and others a

Introduction Isotope ¹³⁴Ba: 4554.0314 The controversy

Barium Isotopes

HD 140283 analysis

4553.9986

4553.9988

4554.0498

4554.0531 4554.0542

4554.0330 €

The even isotopes (except 138) are pure sprocess nuclei and the odd isotopes are a mixture of both processes.

This means that barium isotopes are a good indication of whether a star is dominated by r- or s-processes

¹³⁸Ba:

Barium Isotopes

Only 2 barium lines with significant isotope differences in optical spectrum range, 4554.03 Å (shown) &

Affected by hyperfine splitting.

• The spin of the electron and nucleus affects the energy of odd isotopes.

Changing the isotope ratio the appearance of the line changes.

 $f_{
m odd}$ represents the ratio of odd to even isotopes

$$f_{\text{odd}} = [N(^{135}\text{Ba}) + N(^{137}\text{Ba})] / N(\text{Ba})$$

Introduction spectrum range, 4554
The controversy 4934 Å.

Barium Isotopes

HD 140283 analysis

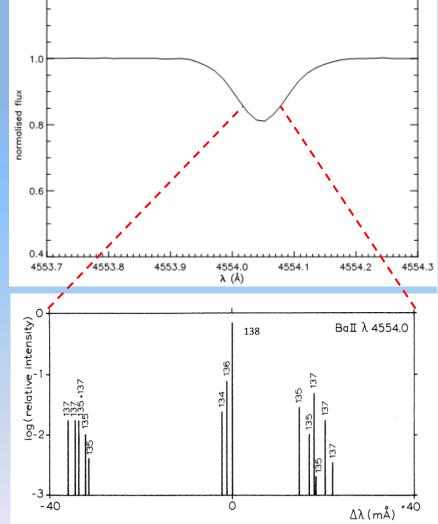


Image from Rutten 1978SoPh...56..237R

Analysis of HD 140283

Observations

Data from high resolution spectrograph on the Subaru Telescope.

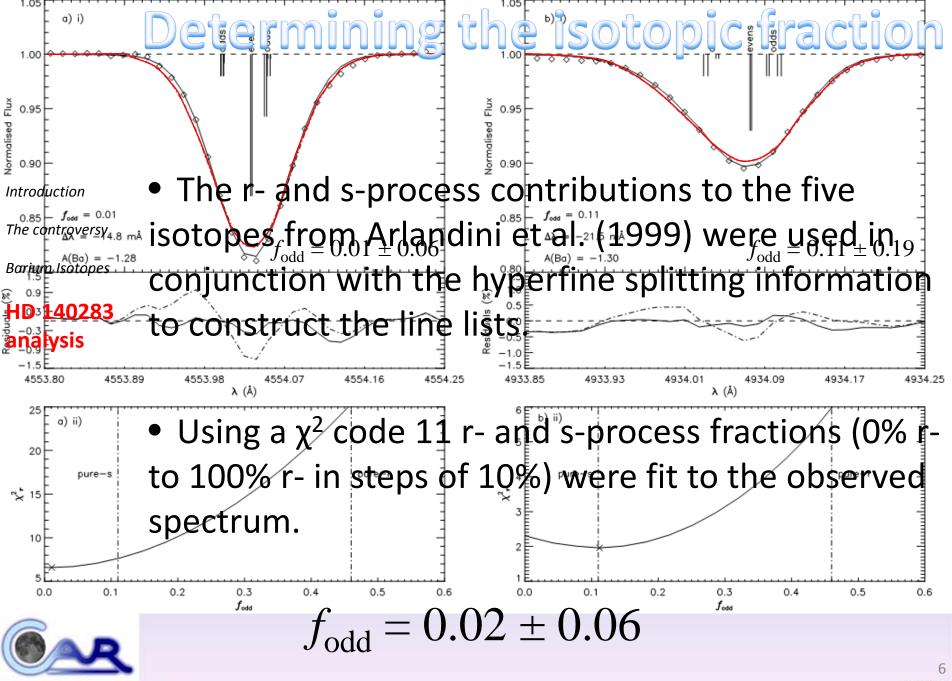
High S/N ~ 1100 per 12 mÅ wide pixel around 4554 Å High resolution ~ 95,000 Ba II 4554Å - EqW 20.1 mÅ

HD 140283 analysis

Introduction

The controversy

Barium Isotopes


<u>Macroturbulence</u>

Constrained using 93 apparently unblended Fe lines by a χ^2 test. Renormalizes A(Fe), $\Delta\lambda$ and macroturbulence for every line. Used three broadening techniques:

Gaussian – Γ = **4.70** km s⁻¹ – 32 lines best fit Radial Tangential – ζ = **4.37** km s⁻¹ – 58 lines best Rotation – $v\sin i = 3.89$ km s⁻¹ – 3 lines best fit

New upper limit on rotation set at 3.89±0.02 km s⁻¹.

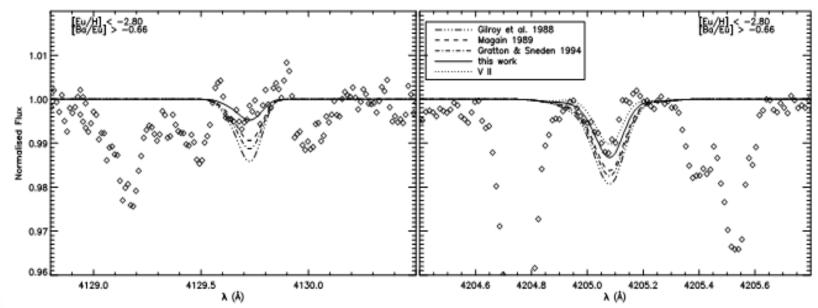
Europium Work

Europium was also analysed. Due to the weakness of the two lines in our spectrum (4129 Å and 4205 Å) we find an upper limit rather than a real detection:

[Eu/H] < -2.80

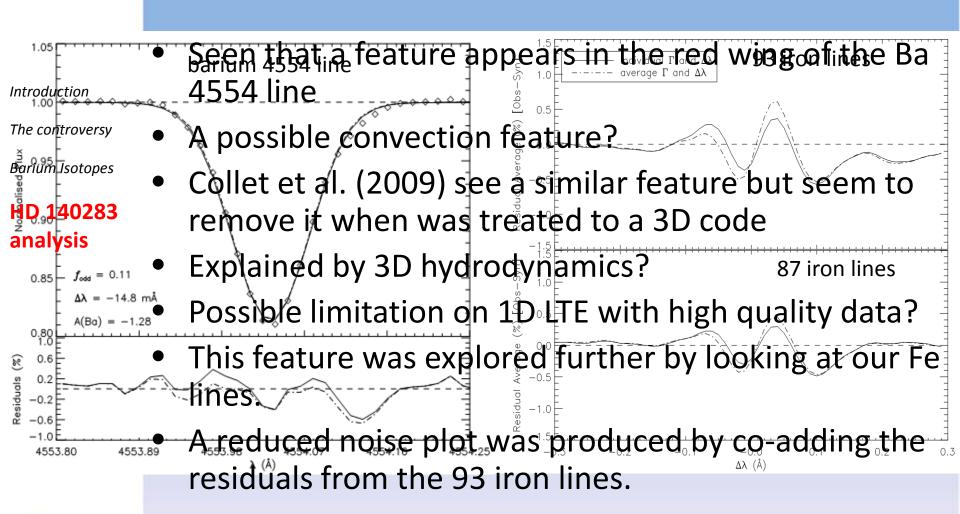
Meaning that:

[Ba/Eu] > -0.66


According to Burris et al. (2000) (or Arlandini et al. 1999) a pure r-process ratio, - 0.81 (-0.69), is marginally ruled out but a pure s-process, +1.45 (+1.13) or an s- and r-process regime is most likely.

Introduction

The controversy


Barium Isotopes

HD 140283 analysis

Asymmetries in Fe lines

Conclusions

 We have carried out a thorough investigation of the uncertainties and explored all avenues for error

- We have shown that HD 140283 is not r-process enhanced like other papers have claimed it to be. Has large implications on current theory
- In the paper we have shown possible limitations of 1D LTE synthesis codes when dealing with high quality data
- We have set new [Ba/H] and [Fe/H] ratios and have placed a lower limit on [Ba/Eu] and new upper limits on [Eu/H] and rotation
- Details on all of this can be found in A. Gallagher et al. (2010)
 submitted

Introduction

The controversy

Barium Isotopes

HD 140283 analysis

