Direct determination of the ¹¹C(α,p)¹⁴N reaction rate with CRIB: an alternative synthesis path to the CNO elements

Seiya Hayakawa Center for Nuclear Study, University of Tokyo

- Motivation
 - ${}^{11}C(\alpha,p){}^{14}N$: Breakout path from pp-chain to CNO
 - What to measure
- Experiment
 - ¹¹C beam production
 - Experimental setup of the direct measurement
 - Experimental setup of the direct measurement
- Results
 - Event ID
 - $^{11}C(\alpha, p)$ 14N Cross sections
 - Reaction rates

11th Symposium on Nuclei in the Cosmos, Heidelberg, 19–23 July 2010

¹¹C(α ,p)¹⁴N: A breakout path from pp-chain

Hot hydrogen burning processes:

- Breakout from the hot pp-chain competing with the β -decay to ¹¹B
- \rightarrow simulation of metal-poor stars (Wiescher et al., 1989)
- Contributes in the vp-process in the neutrino-driven winds in core-collapse supernovae (Wanajo et al, 2010)
- \rightarrow produce more intermediate-mass, less heavy nuclei around A = 100

11th Symposium on Nuclei in the Cosmos, Heidelberg, 19–23 July 2010

$^{7}\text{Be}(\alpha,\gamma)^{11}\text{C}(\alpha,p)^{14}\text{N}$: Contribution in vp-process

- ¹¹C(α,p) overlaps ⁷Be(α,γ)
 - \Rightarrow ¹¹C is mostly produced from ⁷Be(α,γ), and then (α,p)¹⁴N follows.
 - $\Rightarrow {}^{11}C(\alpha, p) rate > {}^{7}Be(\alpha, \gamma) rate$
- ⁷Be(α,γ) rate tends to less mass fraction around A = 100.
 - Limited resonance information only for $T_9 < 2$. (New measurement!! Yamaguchi, NIC_XI_124)
- ¹¹C(α ,p) rate would become more important if ⁷Be(α , γ) has a higher rate.
 - Time-reversal reaction studies by activation method. \Rightarrow Gives only $(\alpha, p_0)^{14}N_{g.s.}$

Center for Nuclear Study,

the University of Tokyo

What to measure

Covered energy ranges of this work by thick-target method with two beams

- Only time-reversal reaction studies by activation method (Ingalls et al., etc.)
 - ⇒ give no information for (α, p_1) , (α, p_2) , ... cross sections
- Not enough resonance parameters are known.

First direct measurement

- Confirm (α,p₀) cross sections
 ⇔ data from time-reversal reaction experiments by activation method
- Determine (α,p₁), (α,p₂), ... cross sections

¹¹C Beam Production with CRIB

CRIB: Center for Nuclear Study Radioactive Ion Beam separator (U. Tokyo, at RIKEN)

11th Symposium on Nuclei in the Cosmos, Heidelberg, 19–23 July 2010

Experimental Setup

- □ Measurement: \blacksquare Beam position $\blacksquare E_{beam}$ \blacksquare Proton position $\blacksquare E_{proton}$
- 140-mm-long, 400-Torr gas target

 ΔT between different transitions; $(\alpha, p_0)^{14}N_{g.s.} \Leftrightarrow (\alpha, p_1)^{14}N_{2312}$: ~ 5 ns

 \Rightarrow event ID in TOF vs. *E* plots

$$\Box \Delta E_{\rm cm} \sim 50 \text{ keV}, \Delta \Omega / \Omega \sim 10\%$$

Center for Nuclear Study,

the University of Tokyo

Event identification

Measured TOF looks stretched at lower energies.

 \Rightarrow A slew correction is needed.

The lines of each transition have similar derivations

 \Rightarrow If (α , p_0) is linearized, other transitions are also linearized.

Event identification

Linearized the 'raw' TOF data

The energy ranges for each transition are consistent with the calculations

$^{11}C(\alpha,p)^{14}N$ cross sections

- From (p,α)': Statistical fit to the several time-reversal reaction studies (Takacs et al.)
 'This work': cross sections for (α,p₀), (α,p₁) and (α,p₁₂) integrated assuming isotropy (→ indicated only the statistical errors).
- \square (α , p_0) mostly determines the reaction rate at stellar temperatures ($T_9 = 1.5-3$).

Center for Nuclear Study,

the University of Tokyo

Reaction rates

The new reaction rate including (α,p₀), (α,p₁) and (α,p₂) is enhanced by 40% at most, and still less than Hauser-Feshback reaction rate.

Summary

- The first direct measurement of the ¹¹C(α,p)¹⁴N reaction was successfully performed with CRIB by the thick-gas-target inverse-kinematics method at stellar energies. Each transition is separable.
- (α, p₀) cross section; mostly consistent with the one from the time-reverse reaction studies. The resonances around 1 MeV may enhance the reaction rate.
- □ $(\alpha, p_{1,2,...})$ contributes about 10% at most for the stellar temperatures ($T_9 < 3$).

Collaborators

S. Kubono, T. Hashimoto, H. Yamaguchi, D.N. Binh, D.M. Kahl, Y. Wakabayashi^a, N. Iwasa^b, N. Kume^b, Y. Miura^b, T. Teranishi^c, J.J. He^d, Y.K. Kwon^e, T. Komatsubara^f, S. Kato^g and S. Wanajo^h

> Center for Nuclear Study, University of Tokyo ^aJapan Atomic Energy Agency ^bTohoku University ^cKyushu University ^dInstitute of Modern Physics ^eChung Ang University ^fUniversity of Tsukuba ^gYamagata University ^hTechnische Universität München

 $11^{\rm th}$ Symposium on Nuclei in the Cosmos, Heidelberg, 19–23 July 2010

Event identification

11th Symposium on Nuclei in the Cosmos, Heidelberg, 19-23 July 2010

$<^{7}Be(\alpha,\gamma)^{11}C> \& <^{11}C(\alpha,p)^{14}N>$ (current database)

- □ ${}^{11}C(\alpha,p){}^{14}N$: time-reversal reaction studies by activation method
 - Provides only (a,p_0) rate.
- □ ⁷Be(α,γ)¹¹C: limited resonance information for only $T_9 < 2$ (Hardie et al. 1984)
 - ${}^{11}C(\alpha,p){}^{14}N$ could limit the rate of ${}^{7}Be{}^{-11}C{}^{-14}N$ sequence if ${}^{7}Be(\alpha,\gamma){}^{11}C \uparrow and {}^{11}C(\alpha,p){}^{14}N \downarrow$
 - New measurement of the ⁷Be + α resonant scattering at CRIB
 ⇒Yamaguchi, poster session, NIC_XI_124

Summary of Beams

Center for Nuclear Study, the University of Tokyo

0 hA

 $\square D$

11th Symposium on Nuclei in the Cosmos, Heidelberg, 19-23 July 2010