Direct determination of the $^{11}\text{C}(\alpha,p)^{14}\text{N}$ reaction rate with CRIB: an alternative synthesis path to the CNO elements

Seiya Hayakawa
Center for Nuclear Study, University of Tokyo

- **Motivation**
 - $^{11}\text{C}(\alpha,p)^{14}\text{N}$: Breakout path from pp-chain to CNO
 - What to measure

- **Experiment**
 - ^{11}C beam production
 - Experimental setup of the direct measurement
 - Experimental setup of the direct measurement

- **Results**
 - Event ID
 - $^{11}\text{C}(\alpha,p)^{14}\text{N}$ Cross sections
 - Reaction rates

- **Summary**
\(^{11}\text{C}(\alpha,p)^{14}\text{N}: \text{A breakout path from pp-chain}\)

- **Hot hydrogen burning processes:**
 - Breakout from the **hot pp-chain** competing with the \(\beta\)-decay to \(^{11}\text{B}\)
 → simulation of metal-poor stars (Wiescher et al., 1989)
 - Contributes in the \(\nu p\)-process in the neutrino-driven winds in core-collapse supernovae (Wanajo et al., 2010)
 → produce more intermediate-mass, less heavy nuclei around \(A = 100\)

Wiescher et al. (1989)
\[{^7}\text{Be}(\alpha,\gamma){^{11}}\text{C}(\alpha,p){^{14}}\text{N}: \text{Contribution in } \nu p\text{-process} \]

- \(^{11}\text{C}(\alpha,p)\) overlaps \(^{7}\text{Be}(\alpha,\gamma)\)
 - \(^{11}\text{C}\) is mostly produced from \(^{7}\text{Be}(\alpha,\gamma)\), and then \((\alpha,p){^{14}}\text{N}\) follows.
 - \(^{11}\text{C}(\alpha,p)\) rate > \(^{7}\text{Be}(\alpha,\gamma)\) rate

- \(^{7}\text{Be}(\alpha,\gamma)\) rate tends to less mass fraction around \(A = 100\).
 - Limited resonance information only for \(T_9 < 2\). (New measurement!! Yamaguchi, NIC_XI_124)

- \(^{11}\text{C}(\alpha,p)\) rate would become more important if \(^{7}\text{Be}(\alpha,\gamma)\) has a higher rate.
 - Time-reversal reaction studies by activation method. \(\Rightarrow\) Gives only \((\alpha,p_0){^{14}}\text{N}\) g.s.
What to measure

- Covered energy ranges of this work by thick-target method with two beams

- Only time-reversal reaction studies by activation method (Ingalls et al., etc.)
 \[\Rightarrow \text{ give no information for } (\alpha,p_1), (\alpha,p_2), \ldots \text{ cross sections} \]

- Not enough resonance parameters are known.

- First direct measurement
 - Confirm \((\alpha,p_0)\) cross sections
 \[\Leftrightarrow \text{ data from time-reversal reaction experiments by activation method} \]
 - Determine \((\alpha,p_1), (\alpha,p_2), \ldots \text{ cross sections} \)
\[^{11}\text{C Beam Production with CRIB} \]

CRIB: Center for Nuclear Study Radioactive Ion Beam separator (U. Tokyo, at RIKEN)

Production reaction:

\[^{1}\text{H}(^{11}\text{B},^{11}\text{C})n \]

Primary Beam:

\[^{11}\text{B}^{3+}, 1 \mu\text{A}, 4.6 \text{ MeV/u} \]

Momentum-dispersive focal plane:

\[\Delta p/p < 0.4\% \]

Wien filter:

\[\pm 50 \text{ kV} \]

Secondary beams:

- \[^{11}\text{C} : 16.9 \text{ MeV}, 1.0 \times 10^5 \text{ pps} \text{ covers } E_{\text{cm}} = 2.3-4.5 \text{ MeV} \]
- \[^{11}\text{C} : 10.1 \text{ MeV}, 3.1 \times 10^5 \text{ pps} \text{ covers } E_{\text{cm}} = 0-2.7 \text{ MeV} \]

Experimental Chamber
Experimental Setup

- Thick “gas” target method in inverse kinematics

- Measurement: ✔ Beam position ✔ E_{beam} ✔ Proton position ✔ E_{proton}

- 140-mm-long, 400-Torr gas target

 ΔT between different transitions; $(\alpha, p_0)^{14}\text{N}_{\text{g.s.}} \leftrightarrow (\alpha, p_1)^{14}\text{N}_{2312} : \sim 5 \text{ ns}$

 ⇒ event ID in TOF vs. E plots

- $\Delta E_{\text{cm}} \sim 50 \text{ keV}, \Delta \Omega/\Omega \sim 10\%$
- Measured TOF looks stretched at lower energies.
 ⇒ A slew correction is needed.

- The lines of each transition have similar derivations
 ⇒ If \((\alpha, p_0)\) is linearized, other transitions are also linearized.
- Linearized the ‘raw’ TOF data
- The energy ranges for each transition are consistent with the calculations
\(^{11}\text{C} (\alpha, p)^{14}\text{N} \text{ cross sections}\)

- ‘From \((p, \alpha)\)’: Statistical fit to the several time-reversal reaction studies (Takacs et al.)
- ‘This work’: Cross sections for \((\alpha, p_0)\), \((\alpha, p_1)\) and \((\alpha, p_{12})\) integrated assuming isotropy (→ indicated only the statistical errors).
- \((\alpha, p_0)\) mostly determines the reaction rate at stellar temperatures \((T_9 = 1.5-3)\).
The new reaction rate including (α,p_0), (α,p_1) and (α,p_2) is enhanced by 40% at most, and still less than Hauser-Feshback reaction rate.
The first direct measurement of the $^{11}\text{C}(\alpha,p)^{14}\text{N}$ reaction was successfully performed with CRIB by the thick-gas-target inverse-kinematics method at stellar energies. Each transition is separable.

(α,p_0) cross section; mostly consistent with the one from the time-reverse reaction studies. The resonances around 1 MeV may enhance the reaction rate.

$(\alpha,p_{1,2,...})$ contributes about 10% at most for the stellar temperatures ($T_9 < 3$).
Collaborators

S. Kubono, T. Hashimoto, H. Yamaguchi, D.N. Binh, D.M. Kahl,
Y. Wakabayashi, N. Iwasa, N. Kume, Y. Miura,
T. Teranishi, J.J. He, Y.K. Kwon, T. Komatsubara,
S. Kato and S. Wanajo

Center for Nuclear Study, University of Tokyo
aJapan Atomic Energy Agency
bTohoku University
cKyushu University
dInstitute of Modern Physics
eChung Ang University
fUniversity of Tsukuba
gYamagata University
hTechnische Universität München
Event identification

Low energy run

High energy run

Proton energy (MeV)

Corrected time (ns)

-60 -50 -40 -30 -20 -10 0 10 20

Proton energy (MeV)

Corrected time (ns)

-60 -50 -40 -30 -20 -10 0 10 20

(\alpha,p_0)

(\alpha,p_1)

(\alpha,p_2)

(\alpha,p_3,4)

+ background
$^{7}\text{Be}(\alpha,\gamma)^{11}\text{C} \& \quad ^{11}\text{C}(\alpha,p)^{14}\text{N}$ (current database)

- $^{11}\text{C}(\alpha,p)^{14}\text{N}$: time-reversal reaction studies by activation method
 - Provides only (α,p_0) rate.

- $^{7}\text{Be}(\alpha,\gamma)^{11}\text{C}$: limited resonance information for only $T_9 < 2$ (Hardie et al. 1984)
 - $^{11}\text{C}(\alpha,p)^{14}\text{N}$ could limit the rate of $^{7}\text{Be}^{11}\text{C}^{14}\text{N}$ sequence if $^{7}\text{Be}(\alpha,\gamma)^{11}\text{C}$ and $^{11}\text{C}(\alpha,p)^{14}\text{N}$
 - New measurement of the $^{7}\text{Be} + \alpha$ resonant scattering at CRIB
 ⇒ Yamaguchi, poster session, NIC_XI_124
Summary of Beams

- Three kinds of beams
 ⇒ High E 11C, Low E 11C, 11B

 - To cover the wide excited energy range
 (High E and Low E 11C)
 - To confirm the validity of this method over the target
 (⇔ known 11B(α, p) c.s.)

- Production and background runs (4He, Ar)

<table>
<thead>
<tr>
<th>E_{Beam} [MeV]</th>
<th>ΔE_{Beam} (FWHM) [MeV]</th>
<th>E_{CM} range [MeV]</th>
<th>Purity [%]</th>
<th>Av. beam rate on target [pps]</th>
<th>4He run time [hrs]</th>
<th>Ar run time [hrs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High E 11C</td>
<td>16.86</td>
<td>0.71 – 0.96</td>
<td>4.5 – 2.3</td>
<td>~100</td>
<td>1.0 x 10^5</td>
<td>28</td>
</tr>
<tr>
<td>Low E 11C</td>
<td>10.12</td>
<td>0.92 – 1.00</td>
<td>2.7 – 0.0</td>
<td>~100</td>
<td>3.1 x 10^5</td>
<td>78</td>
</tr>
<tr>
<td>11B</td>
<td>16.87</td>
<td>0.54</td>
<td>4.5 – 2.9</td>
<td>~100</td>
<td>2.6 x 10^5</td>
<td>11</td>
</tr>
</tbody>
</table>