Measurements of Presolar Grains

Peter Hoppe Max Planck Institute for Chemistry, Mainz

Nuclei in the Cosmos XI July 19-23, 2010

Nebula NGC 3603

HUBBLESITE.or

Outline

Outline Introduction

- SiC Oxides
- Oxides
- Advances
- Summary

Particle Chem. Dep.

Introduction

- Stardust in meteorites & IDPs
- Astrophysical information
- Presolar Silicon Carbide
 - C, N, & Si isotope systematics
 - Heavy elements
- Presolar Oxides & Silicates
 - Identification of silicates
 - O isotope systematics
- Recent Advances
 - SiC SN grains
 - Oxide SN grains
- Summary

Introduction (I)

- Outline Introduction SiC Oxides Advances Summary
- Primitive meteorites contain small quantities (ppb-ppm) of refractory dust grains with highly anomalous isotopic compositions
- First hints on the presence of meteoritic minerals with highly anomalous isotopic compositions in the 1960s
- Separation of SiC as carrier of anomalous noble gas components in the 1980s
 - \rightarrow Presolar origin
 - \rightarrow Stardust

Introduction (II)

Presolar Minerals

Diamond
Silicates in IDPs
Silicates in Meteorites
SiC
Graphite
Spinel, Corund <mark>um, Hibonite</mark>
Si ₃ N ₄
10^{-3} 10^{-2} 10^{-1} 10^{0} 10 10^{2} 10^{3} 10^{10}
Abundance (ppm)

Outline Introduction SiC Oxides Advances Summary

Introduction (III)

Outline Introduction SiC Oxides Advances Summary

Introduction (IV)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

From Circumstellar to Interstellar to Presolar Grains

Introduction (V)

Outline Introduction SiC Oxides Advances

Summary

Particle Chem. Dep.

Astrophysical Information

- Stellar nucleosynthesis and evolution
- Galactic chemical evolution
- Grain formation in stellar environments
- Chemistry in the ISM
- Types of stars that contributed dust to the Solar System
- Solar System formation

Silicon Carbide (I)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

C and N Isotopes

(Data sources: WU St. Louis, MPI Mainz, Carnegie Inst.)

- Mainstream (90%): 1.5-3 M_☉ AGB stars, solar metallicity
- Type Y&Z (a few %): 1.5-3 M_☉ AGB stars, sub-solar metallicity
- Type X (1%):
 Type II supernovae
- Nova (0.1%)
- Type A&B (a few %): J-type C stars? Born-again AGB stars?

Silicon Carbide (II)

- Outline Introduction SiC Oxides Advances
- Summary

(Data sources: WU St. Louis, MPI Mainz, Carnegie Inst.)

Silicon Carbide (III)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

⁹⁹Tc and *s*-Process Isotopic Signatures in MS Grains

(Savina et al., 2004)

- Heavy elements in MS grains show s-process isotopic signatures
- Strong support for origin from 1-3 M_{\odot} AGB stars

Oxides & Silicates (I)

Outline Introduction SiC Oxides Advances Summary

(Messenger et al., 2003)

Identification of Presolar Silicates

- Most presolar minerals can be separated by harsh chemical treatments from meteorites
- Does not hold for silicates
- Silicates are major constituent of O-rich dust around stars
- First silicates discovered in an IDP in 2002
- O isotope mapping with 100 nm resolution

Oxides & Silicates (I)

Outline Introduction SiC Oxides Advances Summary

O Isotopes

- Group 1 (70%): 1.2-2.2 M_☉ AGB stars, solar metallicity
- <mark>Group 2 (15%)</mark>: <2 M_☉ AGB stars, CBP
- Group 3 (5%): Low-mass, low-met. AGB stars? Type II supernovae?
- Group 4 (10%): Type II supernovae

MPI for Chemistry Particle Chem. Dep. (Data sources: WU St. Louis, Carnegie Inst., JSC, Caltec, MPI Mainz)

Oxides & Silicates (III)

¹⁷O/¹⁶O in Presolar Grains and Red Giant Stars

Outline Introduction SiC Oxides Advances Summary

- ¹⁷O/¹⁶O in RG stars depends mainly on stellar mass
- Distribution of ¹⁷O/¹⁶O in AGB grains is sensitive measure of mass distribution of parent stars
- Upper mass limit of AGB parent stars inferred from Monte Carlo simulation
- Best match for a mass limit of 2.2 M_☉

Recent Advances (I)

Submicrometer-sized Presolar SiC

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep. (Gyngard et al., 2010; Hoppe et al., 2010; Zinner et al., 2010) Grains with strong enrichments in ^{29,30}Si very rare among larger grains

Origin:

- Outside range of AGB grains
- ¹²C/¹³C incompatible with nova predictions
- Outside range of common SN grains
- But: large range of Si compositions in SNII ejecta possible

Recent Advances (II)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

Si in Type II SNe

(Rauscher et al. 2002)

- Mixing of matter from different SN layers can produce a wide range of Si-isotopic compositions
- Grain B has ²⁹Si/³⁰Si of ~2x solar
 - Implies relative large contributions from O/Ne zone
 - Provides opportunity to make test of Travaglio et al. hypothesis (2x higher ²⁹Si yield in O/Si and O/Ne)

Recent Advances (III)

Outline Introduction SiC Oxides Advances Summary

Particle Chem. Dep.

Mixing of 15 Mo SNII Ejecta

- Very good match except for ²⁹Si/²⁸Si
- Doubling the ²⁹Si yield in the O/Ne zone:
 - Perfect match for ²⁹Si/²⁸Si
 - Supports idea of underestimated ²⁹Si production
 - 3x higher ²⁶Mg(α,n)²⁹Si increases ²⁹Si yield by 2x
- GCE models predict way too little ²⁹Si
 - 1.8-1.9x more ²⁹Si in SNell
 - Good match to solar ²⁹Si

Recent Advances (IV)

Outline Introduction SiC Oxides **Advances** Summary

1500

1000

500·

-500--500

8⁵⁷Fe/⁵⁶Fe (‰)

0

Δ

⊞

MPI for Chemistry Particle Chem. Dep.

Fe in SiC SN X grains

500

X grains MS grains 444-2 AB grains Y grains Z grains 69. -250 250

δ⁵⁴Fe/⁵⁶Fe (‰)

(Marhas et al. 2008)

- SiC X grains contain up to 0.5 wt% Fe
- ⁵⁷Fe enrichments in most X grains with ⁵⁷Fe/⁵⁶Fe up to 2x solar
- ⁵⁴Fe/⁵⁶Fe are essentially normal

Recent Advances (V)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

Fe in Type II SNe

(Rauscher et al. 2002)

- ⁵⁷Fe/⁵⁶Fe and Si can be explained by mixing matter from He/N, He/C, and Si/S zones
- Normal ⁵⁴Fe/⁵⁶Fe puzzeling:
 - Si/S zone is very rich in ⁵⁴Fe
 - Preferential trapping of Fe from outer zones?
 - Element fractionation by molecule chemistry?
 - S isotope anomalies in two SN grains with heavy Si support this idea

Recent Advances (VI)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

Origin of Group 4 Oxide/Silicate Grains

- Origin of Group 4 grains:
 - Type II SNe
 - High-metallicity AGB stars
- Multi-element isotope data:
 - Isotope data for O, Mg, and/or Ca from three Group 4 oxide grains
 - Comparison with SNII mixing models

Recent Advances (VII)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

Origin of Group 4 Oxide/Silicate Grains

- Isotope data are well explained by 15 M_☉ SNII mixing models
 - Most matter from H and He/N zones
 - ¹⁸O enrichments due to admixture of He/C zone matter
- Strong support for SN origin of Group 4 grains
- Additional evidence from Mg & Si data of silicate grains 20

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

⁴⁴Ti in a SN Spinel

(Gyngard et al. 2010)

- ¹⁶O-rich SN grains are extremely rare
- ¹⁶O-rich spinel with radiogenic ⁴⁴Ca found
 - ^{17,18}O/¹⁶O ~ 0.1x solar
 - ⁴⁴Ca/⁴⁰Ca ~ 60x solar
 - ⁴⁴Ti/⁴⁸Ti = 0.004
 - Strong support for SN origin
 - Multi-element isotope data can be reproduced by SN mixing (15 M_o model of Woosley & Heger 2007)

Recent Advances (IX)

Outline Introduction SiC Oxides Advances Summary

MPI for Chemistry Particle Chem. Dep.

⁵⁴Cr Excesses in Oxide Grains

- Normal 2000 • ⁵⁴Cr-rich 7-10 1500 δ⁵⁴Cr/⁵²Cr (‰) 1000 500 0 -50 50 -100 0 100 δ^{53} Cr/ 52 Cr (‰) (Nittler et al. 2010)
- Bulk meteorites show ⁵⁴Cr variations
- Identification of oxide grains with large ⁵⁴Cr excesses but no O isotope anomalies
 - Origin of ⁵⁴Cr anomaly:
 - Oxidation (ISM, Solar System) of SN metal grains
 - Cr oxides from SNell
 - GCR irradiation of Ferich grains

Outline Introduction SiC Oxides

- Advances
- Summary

- Primitive meteorites and IDPs contain presolar dust grains that provide a wealth of astrophysical information
- The majority of presolar grains formed in 1-3 M_☉ AGB stars, a few % in SNeII, and << 1% in novae</p>
- (Some) existing problems/shortcomings:
 - For the most abundant presolar mineral, the silicates, only limited information on isotopic compositions exists
 - Why are there no apparent contributions from >4 M_☉ AGB stars?
 - The role of CBP in the parent stars of presolar grains from AGB stars
 - Why so few SN grains with ¹⁶O excesses?
 - The comparison of SN grain data with model predictions is based on ad-hoc mixing calculations; more realistic models desired (physics of mixing, molecule chemistry)