## Mass measurements on the rp-process path





### Outline





## **JYFL – Accelerator Laboratory**





## JYFLTRAP setup @ IGISOL





# Waiting-point nucleus <sup>56</sup>Ni

 $T_{1/2}(^{56}Ni) = 6.075 d$ 

Historically endpoint of rpprocess

Rp-process has to proceed vai proton capture on <sup>56</sup>Ni

→Rate of <sup>56</sup>Ni(p, $\gamma$ )<sup>57</sup>Cu becomes crucial !



A.Kankainen et al., arXiv:1007.0978v1 6 Jul 2010 and poster NIC\_XI\_178



Production: <sup>3</sup>He/p on <sup>54</sup>Fe/<sup>58</sup>Ni <sup>20</sup>Ne on Ca

#### Analysis network:

13 nuclides 17 links

#### **Results:**

S<sub>p</sub> of <sup>57</sup>Cu directly ! JYFLTRAP: 689.7(5) keV AME03: 695(19) keV



A.Kankainen et al., arXiv:1007.0978v1 6 Jul 2010 and poster NIC\_XI\_178



# Reaction rate of <sup>56</sup>Ni(p,γ)<sup>57</sup>Cu



- Rate slightly higher than previously
- Uncertainties below 1 GK removed
- Rp-process proceeds beyond <sup>56</sup>Ni

A.Kankainen et al., arXiv:1007.0978v1 6 Jul 2010 and poster NIC\_XI\_178

# **F**

### **Rp- and vp-process studies**



### **Rp- and vp-process studies**

JYFL



### **Proton separation energies**

JŸFL





C. Weber et al., PRC 78 (2008) 054310

### **Proton separation energies**

JŸFL





C. Weber et al., PRC 78 (2008) 054310

<sup>88</sup>Tc mass deviation;

Jyfl

 $\Delta me_{AME-TRAP}$ = -1031keV

<sup>87</sup>Mo(n,p)<sup>87</sup>Nb instead of
<sup>87</sup>Mo(p,γ)<sup>88</sup>Tc, increase of <sup>87</sup>Nb

 $\rightarrow$  Higher <sup>87</sup>Sr abundance !

<sup>90</sup>Tc mass deviation;  $\Delta me_{AME-TRAP}$ = -486(240) keV

Increases the rate for <sup>90</sup>Tc(γ,p)<sup>89</sup>Mo





#### C. Weber et al., PRC 78 (2008) 054310



# S<sub>p</sub>(<sup>93</sup>Rh) and <sup>92</sup>Mo/<sup>94</sup>Mo ratio

Predicting the proton separation energy of <sup>93</sup>Rh from supernova nucleosynthesis. J. L. Fisker, R. D. Hoffman, J. Pruet, arXiv:0711.1502v1 [astro-ph] 9 Nov 2007



Present model with its parameters is not sufficient to reproduce solar abundance ratio of <sup>92</sup>Mo/<sup>94</sup>Mo

Canadian Penning Trap-results: J. Fallis et al., PRC 78 (2008) 022801(R) In agreement with JYFLTRAP and SHIPTRAP !  $S_p = 2007(9)$  keV vs.  $S_p = 2001(5)$  keV



#### C. Weber et al., PRC 78 (2008) 054310

# **I**

# SnSbTe-cycle: End of the rp-process ?



# **P**

# SnSbTe-cycle: End of the rp-process ?





## **Summary and outlook**

 ~90 neutron-deficient nuclides measured at JYFLTRAP Deviations compared to evaluated data http://research.jyu.fi/igisol/JYFLTRAP\_masses/ and ISOLTRAP database Modest impact on final abundances Test of astrophysics models Strong influence on calculated rates 



## **Summary and outlook**

- ~90 neutron-deficient nuclides measured at JYFLTRAP
- Deviations compared to evaluated data

http://research.jyu.fi/igisol/JYFLTRAP\_masses/ and ISOLTRAP database

- Modest impact on final abundances
- Test of astrophysics models
- Strong influence on calculated rates

35

30

25

20

15

10







V.-V. Elomaa, T. Eronen,
U. Hager, J. Hakala, A. Jokinen,
A. Kankainen, V. Kolhinen,
I. Moore, H. Penttilä,
S. Rahaman, S. Rinta-Antila,
J. Rissanen, A. Saastamoinen,
C. Weber and J. Äystö

#### http://research.jyu.fi/igisol/JYFLTRAP\_masses/