NUCLEOSYNTHESIS AND CHEMICAL EVOLUTION OF INTERMEDIATE MASS STARS: RESULTS FROM PLANETARY NEBULAE

W. J. Maciel, R. D. D. Costa, T. E. P. Idiart IAG/USP – São Paulo, Brazil INTRODUCTION
THE PN SAMPLE
AVERAGE ABUNDANCES AND DISTRIBUTIONS
ABUNDANCE CORRELATIONS

WHY PLANETARY NEBULAE? Accurate abundances of elements that <u>are not</u> produced by the progenitor stars (O, S, Ne)

Chemical evolution of the host galaxies

Accurate abundances of elements that <u>are</u> produced by the progenitor stars (He, N, C)

Intermediate mass star nucleosynthesis

Accurate abundances of elements that <u>are difficult</u> to study in stars

Comparison with stellar data

System	Number of PN	Source		
MW Disk	84	IAG		
MW Bulge	188 +84	IAG + SRM		
Sample A (MW)	234	MC 2010		
Sample B (MW)	372	MC 2010		
LMC	23 + 106 + 120	IAG + SRM + LD		
SMC	45 +48 +36	IAG + SRM + LD		

IAG – Maciel & Costa (2010), Maciel et al. (2009) SRM – Stasińska et al. (1998) LD – Leisy & Dennefeld (2006)

System	He	0	S	Ar	Ν	Ne	С
MW Sample A	0.115	8.63	6.88	6.39	8.14	7.96	8.67
MW Sample B	0.113	8.59	6.87	6.37	8.10	7.94	8.66
MW Average	0.115	8.61	6.88	6.38	8.12	7.95	8.67
LMC	0.105	8.25	6.99	6.00	7.74	7.45	
SMC	0.095	7.88	6.92	5.58	7.40	7.13	

ABUNDANCE CORRELATIONS

Distance independent

Elements that <u>are not</u> produced by the progenitor stars (O, S, Ne)

Elements that <u>are</u> produced by the progenitor stars (He, N, C)

Interstellar N Dredged-up N

Abundances relative to O

Comparison with theoretical models Marigo (2003)

Comparison with theoretical models Marigo (2003)

Comparison with theoretical models Karakas (2003)

CONCLUSIONS

- PN are useful to check abundances predicted by theoretical models.
- Important differences are observed between abundances relative to hydrogen or oxygen.
- Correlations of N abundances with He/H can be used to estimate the massas and metallicities of observed CSPN progenitors.
- Agreement with theoretical models is fair, but abundance determinations should be improved and expanded.