Unbound states of ³²Cl relevant for novae

M. Matoš, D. W. Bardayan, J. C. Blackmon, J. A. Clark, C. M. Deibel, L. Linhardt, C. D. Nesaraja, P. D. O'Malley, P. D. Parker, K. T. Schmitt

Louisiana State University Oak Ridge National Laboratory Argonne National Laboratory WNSL, Yale University Rutgers University University of Tennessee, Knoxville Joint Institute for Nuclear Astrophysics

Nuclei in Cosmos, Heidelberg July 2010

Novae

- thermonuclear reactions produce a huge increase in luminosity
- followed by the ejection of matter

- cataclysmic binary
- accretion of hydrogen onto the surface of a white dwarf star from its companion star

Optical spectra of Nova Herculis

R.E. Williams, M.M. Phillips and M. Hamuy, Ap. J. Sup. Ser. 90 (1994) 297

³¹S(p, γ)³²Cl Reaction

³²S(³He,t)³²CI Charge Exchange Reaction ³He beam

- used to populate excited states in ³²Cl
- 30 MeV ³He beam delivered by the tandem Van de Graaff accelerator at WNSL, Yale

³²S(³He,t)³²CI Charge Exchange Reaction Sulfur target

used to populate excited states in ³²Cl

 thin (~300µg/cm²) ZnS targets made by the evaporation technique on a carbon backing at ORNL

³²S(³He,t)³²Cl Charge Exchange Reaction t detection by Enge Spectrograph at Yale

YLSA - silicon strip detector array

 for protons emitted from excited states in ³²Cl

- gas-filled, position sensitive ionization drift chamber
- plastic scintillator

Spectra

E vs. ΔE particle identification spectrum

Targets: ZnS 350 μg/cm² ZnS 240 µg/cm² Si 300 µg/cm²

Angles: 3, 5, 10, 20 deg

Focal plane position spectrum gated on tritons

new mass values for ²⁸P and ³²Cl C.Wrede et al. PRC 81, 055503

New state in ³² Cl - 2610(3) keV						
	(a	pai	rt of a	doub	let)	
500	3067		importa	nt for ³¹ S	5(p,γ) ³² Cl	
EXPLOSIVE HYDROGEN BURNING OF ²⁷ Si, ³¹ S, ³⁵ Ar, AND ³⁹ Ca IN NOVAE AND X-RAY BURSTS						
CHRISTIAN ILIADIS University of North Carolina at Chapel Hill, and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308; iliadis@tunl.duke.edu PIETER M. ENDTAICHT Affect the senergy output (eV) R. J. Van de Graaff Laboratorium, Universiteit Utrecht, P.O. Box 500, 3508 Adviced, Netwerlands CHRISTIAN (eV)						
NIKOS PRANTZO PARITZO PARITE PARIS PRANTZO						
WILLIAM J. THOMPSON 10^{-2} University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255; wmjthompson@msn.com 10^{-2} 1.2×10^{-2} Received 1998 April 24; accepted 1999 May 28 10^{-3} 3.4×10^{-3}						
2574°	2740	1_{4}^{+}	999	$5.1 \times 10^{\circ}$	3.3×10^{-2}	2.4×10^{-2}
2676 ± 10	2658	2^{+}_{4}	1101 ± 12	$4.9 \times 10^{\circ}$	5.5×10^{-2}	6.8×10^{-2}
$2809 \pm 5 \dots$	3005	23 2-	1294 ± 9 1377 ± 0	1.2×10^{-3}	6.5×10^{-3}	1.1×10^{-3}
3067 + 5	3443	$\frac{2_1}{4_1^-}$	1492 ± 9	54×10^{1}	1.7×10^{-3}	3.0×10^{-3}
3177 + 5	3320	3-	1602 + 9	5.6×10^{1}	2.4×10^{-3}	4.2×10^{-3}
3301 ± 10	3444	2_{5}^{+}	1726 ± 12	^d	1.7×10^{-2}	$< 2.2 \times 10^{-2}$
3397°	3149	4_1^+	1822	^d	1.1×10^{-3}	$< 2.5 \times 10^{-3}$

^a Experimental values, adopted from Endt 1998.

^b Calculated from first column using $Q_{py} = 1574.7 \pm 6.9$ keV (Audi & Wapstra 1995). ^c State has not been observed experimentally. The E_x value is estimated by using the IMME (eq. [11]). The estimated uncertainty is 50 keV (§ 2.2).

^d Value is not estimated, since the spectroscopic factor S of the ${}^{32}P$ mirror state has not been measured. The upper limit for $\omega\gamma$ is calculated with $\omega\gamma \leq \omega \hat{\Gamma}_{\gamma}$ (since $\Gamma_{p}/\Gamma \leq 1$).

ωγ taken from Iliadis et al., ApJ 524, 434

Resonance Reaction Rates

Resonance Reaction Rates

ωγ taken from Iliadis et al., ApJ 524, 434

Conclusions

- Ievels in ³²Cl remeasured
- new level discovered
- our understanding of the properties of the levels in ³²Cl has been greatly improved
- currently evaluating impact on reaction rate: widths of the 2.2 MeV state dominate uncertainty in reaction rate
 Γp ~ Γγ, but estimates Γp ~ 200x Γγ
 - Are estimates of the gamma or proton widths wrong?
- Spins
- new mass value for ¹⁶F ?

PHYSICAL REVIEW C

AUGUST 1994

Reaction rate for ${}^{31}S(p, \gamma){}^{32}Cl$ and its influence on the SiP cycle in hot stellar hydrogen burning

VOLUME 50, NUMBER 2

S. Vouzoukas, C.P. Browne, U. Giesen, J. Görres, S.M. Graff, H. Herndl,[†] C. Iliadis,^{*} L.O. Lamm,[‡] J. Meissner, J.G. Ross,[§] K. Scheller,¹ L. van Wormer,^{*} and M. Wiescher Department of Physics, University of Notre Dame, Indiana 46556

> A.A. Rollefson Department of Physics and Astronomy, University of Arkansas, Little Rock, Arkansas 72204 (Received 15 December 1993)

