

The neutrino-process and light element production

Ko Nakamura

(National Astronomical Observatory of JAPAN)

Collaborators: Takashi Yoshida (Univ. of Tokyo) Toshikazu Shigeyama (Univ. of Tokyo / RESCEU) Toshitaka Kajino (NAOJ)

11th Symposium on Nuclei in the Cosmos (NIC XI) July 22, 2010

Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B

Big Bang Nucleosynthesis

Primordial ⁷Li (Spite plateau)

Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B

Big Bang Nucleosynthesis

Primordial ⁷Li (Spite plateau)

fragiles

H,He ○

Neutrino-induced Nucleosynthesis

- Huge number of neutrinos (>10⁵⁸!)
- $v_e, \overline{v}_e, v_{\mu\tau} = (v_\mu, v_\tau, \overline{v}_\mu, \overline{v}_\tau)$

 $<\!\!\varepsilon_{\nu e}\!\!> < <\!\!\varepsilon_{\bar{\nu}e}\!\!> < <\!\!\varepsilon_{\nu\mu\tau}\!\!>$

- Some interact with materials and induce nucleosynthesis
 - => The v-process (Woosley+ 1990)
- ⁷Li, ¹¹B, ¹⁹F, ..., ¹³⁸La, ¹⁸⁰Ta

> The ν -process

- Neutral current reaction: $(Z, A) + \nu \rightarrow (Z-1, A-1) + \nu' + p$ $(Z, A) + \nu \rightarrow (Z, A-1) + \nu' + n$
- Charged current reaction: $(Z, A) + v_e \rightarrow (Z+1, A) + e^-$

 $(Z, A) + \overline{\nu}_e \to (Z-1, A) + e^+$ $(Z, A) + \overline{\nu}_e \to (Z-1, A) + e^+$

• Boron production ${}^{12}C(v, v'n){}^{11}C, {}^{12}C(v, v'p){}^{11}B$ ${}^{12}C(v_e, e^-p){}^{11}C, {}^{12}C(\overline{v}_e, e^+n){}^{11}B$ \downarrow ${}^{11}B$ in 20 min.

Calculations: SN Ic Explosion

• Progenitor model:

Туре	M _{ms} [M _{sun}]	M[M _{sun}]	Eex	SN
lb	12	4	1	
lc	15	4	1	19941
lc	25	6	4	2002ap
lc	40	15	30	1998bw
II	16	16	1	1987A

- Numerical code:
 - 1-dimensional hydrodynamic code
 - incl. effects of special relativity

(KN & Shigeyama 2004)

- Relativistic hydrodynamic eq.
- Outputs:
 - time evolution of physical quantities: $\rho(t)$, T(t)
 - energy spectra of ejecta: *M*(>*E*)

Calculations: The v-process

◆ Neutrino luminosity (Woosley+ 90):

$$L_{vi}(t) \propto \frac{E_{v}}{\tau_{v}} \exp(-\frac{t - r/c}{\tau_{v}})$$
$$v_{i}: v_{e\mu\tau}, \overline{v}_{e\mu\tau}$$

- decay time: $\tau_v = 3 \text{ s}$
- total neutrino energy: $E_v = 3 \times 10^{53}$ ergs
- Energy spectra: Fermi-Dirac distribution

 (kTνe, kTνe, kTνμτ) =
 (3.2, 5.0, 6.0) MeV ← normal Tνμτ
 (3.2, 5.0, 8.0) MeV ← high Tνμτ
- Nuclear reaction network consisting of 291 species of nuclei

Calculations: Spallation Reactions

Results - process dependence (98bw)

- LiBeB from the v-process
 - ¹¹B production in C-rich layers
 - ... and in the innermost region (incl. 7Li !)
 - more LiBeB in high $T_{\nu_{\mu\tau}}$ model
- LiBeB from spallations
 - 0.04*M* \odot of ejecta attain ε > 10 MeV/A
 - plenty of LiBeB
 - predominantly from O spallation

process	⁶ Li	⁷ Li	⁹ Be	¹⁰ B	¹¹ B
u (low Tv)	1.7(-11)	7.4(-9)	4.5(-11)	1.3(-9)	2.7(-7)
ν (high Tv)	5.9(-11)	2.5(-8)	1.1(-10)	2.8(-9)	5.5(-7)
spallation	2.4(-7)	3.3(-7)	1.0(-7)	4.4(-7)	1.3(-6)

LiBeB from each process (1998bw model)

* 2.5(-10) = 2.5×10⁻¹⁰ Msun

Results - model dependence (11B)

- ¹¹B from the *v*-process in SNe lbc
 - as much as SNe II
 - favors less energetic explosion
 - production (ν) and destruction (shock)
- ¹¹B from spallations in SNe Ic
 - strongly dependent on Eex
 - little contribution from Ib (He) & II (H)

$^{11}\mbox{B}$ from each model

process	(b)	94I(c)	02ap(c)	98bw(c)	87A(II)
u (low Tv)	4.3(-7)	1.2(-7)	1.3(-7)	2.7(-7)	7.1(-7)
u (high Tv)	1.1(-6)	2.8(-7)	3.1(-7)	5.5(-7)	
spallation	negligible	7.8(-9)	4.5(-8)	1.3(-6)	negligible

* 2.5(-10) = 2.5×10⁻¹⁰ Msun

Results - compared with observation

- B isotope ratios (¹¹B/¹⁰B)
 - 4.05 ± 0.05 (meteorites)
 - \sim 3 (spallations)
 - \sim 200 (the v-process)
 - v-process (¹¹B) + spallation (^{11,10}B)

Results - compared with observation

- B isotope ratios (¹¹B/¹⁰B)
 - 4.05 ± 0.05 (meteorites)
 - \sim 3 (spallations)
 - \sim 200 (the v-process)
 - v-process (¹¹B) + spallation (^{11,10}B)
- HNe contribution is low
- SNe lb/c might ...

-, play some important role in low Z

- make some anomalous stars

Summary

- Core-collapse SNe: SNe lb, lc, ll
- We investigated LiBeB production via the v-process and spallations in CCSNe.
- The v-process synthesizes ${}^{11}B$ in C/O layer.
- The outermost nuclei accelerated by explosion interact with ISM and produce ^{6,7}Li, ⁹Be, ^{10,11}B via spallation reactions.
- Dense CSM surrounding SNe lb/c

 → localized synthesis and star formation
 → LiBeB-rich star (HD 106038) ?
- Key discriminator: Isotope ratios
 - BBN => ⁷Li >> ⁶Li
 - CRs => ⁷Li ∼ ⁶Li, ¹⁰B ∼ ¹¹B
 - v-process => ¹¹B >> ¹⁰B

