Microscopic Nuclear Structure and Reaction Calculations in the FMD Approach

Thomas Neff Hans Feldmeier, Karlheinz Langanke

> 11th International Symposium on Nuclei in the Cosmos NIC XI

> > Heidelberg, Germany July 19, 2010

Overview

Effective Nucleon-Nucleon interaction:

Unitary Correlation Operator Method

Short-range Central and Tensor Correlations

Many-Body Method:

Fermionic Molecular Dynamics

- Model
- Nuclear Structure Applications

Reactions:

³He(α , γ)⁷Be radiative capture

- ⁷Be Bound States and Scattering Phase Shifts
- S-Factor

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- central correlations

- strong dependence on the orientation of the spins due to the tensor force
- tensor correlations

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

- central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

• Unitary Correlation Operator Method

Realistic Effective Interaction

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

• Unitary Correlation Operator Method

Realistic Effective Interaction

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

 $\langle T \rangle$

 $\langle H \rangle$

 $\langle V \rangle$

Fermionic

Slater determinant

$$\boldsymbol{Q} \rangle = \mathcal{A}\left(\left| \boldsymbol{q}_1 \right\rangle \otimes \cdots \otimes \left| \boldsymbol{q}_A \right\rangle \right)$$

• antisymmetrized A-body state

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b})^2}{2\alpha} \right\} \otimes | \chi^{\uparrow}, \chi^{\downarrow} \rangle \otimes | \xi \rangle$$

- Gaussian wave-packets in phase-space (complex parameter b encodes mean position and mean momentum), spin is free, isospin is fixed
- width α is an independent variational parameter for each wave packet

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b})^2}{2a} \right\} \otimes | \chi^{\uparrow}, \chi^{\downarrow} \rangle \otimes | \xi \rangle$$

- Gaussian wave-packets in phase-space (complex parameter b encodes mean position and mean momentum), spin is free, isospin is fixed
- width α is an independent variational parameter for each wave packet

Antisymmetrization

FMD PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

$$\underset{\sim}{P}^{\pi} = \frac{1}{2}(1 + \pi \underset{\sim}{\Pi})$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \, \mathbf{Q}^{(a)} \, \right\rangle \,, \quad a = 1, \ldots, N \right\}$$

$$\underset{\sim}{P^{\pi}}=\frac{1}{2}(1+\pi\underset{\sim}{\Pi})$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{HP}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{P}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

Example: Neon Isotopes

Separation Energies

nuclear structure details responsible for peculiar behaviour of charge radii

Geithner, Neff, et. al., Phys. Rev. Lett. 101 (2008) 252502

Thomas Neff — NIC XI, 07/19/10

³He(*α*, γ)⁷Be **Models**

Potential models

- ⁴He and ³He are point-like particles
- interacting via an effective nucleus-nucleus potential fitted to bound state properties and phase shifts

Microscopic Cluster Models

- antisymmetrized wave function built with ⁴He and ³He clusters
- polarization effects sometimes included by adding other channels like ⁶Li plus proton
- interacting via an effective nucleon-nucleon potential, adjusted to describe bound state properties and phase shifts

Fermionic Molecular Dynamics

- antisymmetrized wave function built with ⁴He and ³He FMD clusters
- FMD wave functions obtained in variation after angular momentum projection on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ with radius constraint in the interaction region to include polarization effects
- interacting via realistic UCOM interaction that reproduces the nucleon-nucleon phase shifts

³He(α, γ)⁷Be **Bound and Scattering States**

dashed lines - frozen configurations only, solid lines - FMD configurations in interaction region included

Bound states

	Experiment	FMD
E _{3/2-}	-1.59 MeV	-1.50 MeV
E _{1/2-}	-1.15 MeV	-1.49 MeV
r _{charge}	2.647(17) fm	2.67 fm

- Scattering phase shifts well described, polarization effects important
- splitting between 3/2⁻ and 1/2⁻ states too small, but centroid energy and charge radius well reproduced
- with frozen configurations only the 1/2⁻ is and the 3/2⁻ state is almost unbound – polarization effects are essential

³He(*α*, γ)⁷Be **S-Factor**

³He(α, γ)⁷Be **S-Factor**

• dipole transitions from $1/2^+$, $3/2^+$, $5/2^+$ scattering states into $3/2^-$, $1/2^-$ bound states

- energy dependence and normalization of new high quality data well described
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified
- numerics becomes difficult at very low energies, extrapolation to E = 0 therefore hard

Summary

Unitary Correlation Operator Method

- Explicit description of short-range central and tensor correlations
- Decouples low- and high-momentum modes

Fermionic Molecular Dynamics

- Microscopic many-body approach using Gaussian wave-packets
- Projection and multiconfiguration mixing
- Consistent description of well bound states with shell structure and loosely bound states of cluster or halo nature

³He(α, γ)⁷Be **Radiative Capture**

- Fully microscopic calculation with realisitic two-body interaction
- Bound states, resonance and scattering wave functions
- S-Factor: energy dependence and normalization reproduced
- analyze internal part of wave function, extrapolation to E = 0
- role of three-body forces ?

Thanks

to my Collaborators

S. Bacca, A. Cribeiro, R. Cussons, H. Feldmeier, P. J. Ginsel, B. Hellwig, K. Langanke, R. Torabi, D. Weber

GSI Darmstadt

H. Hergert, R. Roth

Institut für Kernphysik, TU Darmstadt