Constraints on neutron stars theories from nearby neutron star observations

Ralph Neuhäuser

with senior post-doc Valeri Hambaryan and PhD students Markus Hohle,
Thomas Eisenbeiss, Ludwig Trepl, and Nina Tetzlaff (Univ. Jena)

Astrophysikalisches Institut und Universitäts-Sternwarte www.astro.uni-jena.de Friedrich-Schiller-Universität Jena

Collaboration with R. Diehl, F. Haberl, F. Walter, J. Lattimer, D. Breitschwerdt, V. Suleimanov, K. Werner
\Rightarrow Shout lintion on young nearboy neutirom stars
\Rightarrow Constraining the Equation-of-State (E0S) with optical and X-ray oloservations of young neutron stars
\Rightarrow Identififying birith places of young nearby neutrom stars

X-ray pulsations

Goal: Constraining equation-of-state

Case 1: Atomic line in RXJ0720

Possible identification of atomic line in M7 neutron star (Hambaryan, Neuhäuser et al. 2009 A\&A Letters) \rightarrow compactness, i.e. mass / radius, i.e. a constraint for EoS

Goal: Constraining equation-of-state

Case 2: Radius of RXJ1856 from surface observations

M7 are radio-quiet thermally emitting Neutron Stars, we observe their surface. XMM \& Chandra X-ray spectra give temperature T from spectral fitting Optical imaging photometry (e.g. Hubble Space Telescope) gives brightness Multiple optical imaging gives parallaxe or distance

Distance and brightness give luminosity L

Luminosity L and temperature T give radius $R \quad\left(L=4 \pi \sigma R^{\wedge} 2 T^{\wedge} 4\right)$
Previous discrepancy on distance ...
$117+/-12$ pc (Walter \& Lattimer 2002) with 3 obs
$(\rightarrow \mathrm{R}=17 \mathrm{~km}$ at infinity, Trümper 2004)
160 - 180 pc (Kaplan and van Kerkwijk 2007) 8 obs

Goal: Constraining equation-of-state

Case 3: Compactness from phase-resolved spectroscopy

Light curves in different energy bands

	$0.16-0.5 \mathrm{keV}$	13\%
	$0.5-0.6 \mathrm{keV}$	22\%
	$0.6-0.7 \mathrm{keV}$	33\%
	$0.7-2 \mathrm{keV}$	42\%

$$
\begin{aligned}
& \text { RBS } 1223 \text { = RXJ } 1308 \\
& \text { double-hamped light curve } \\
& \text { (but largest pulse fraction, } 18 \% \text {) }
\end{aligned}
$$

Our new model:

and mag. field

$$
T^{4}=T_{1,2}^{4}\left(\frac{\cos ^{2} \vartheta}{\cos ^{2} \vartheta+a_{1,2} \sin ^{2} \vartheta}\right)+T_{\min }^{4}
$$ distribution (bottom)

Spectrum and light curve or phase-resolved spectroscopy

Hambaryan, ... Neuhäuser, et al. (in prep)

Goal: Constraining equation-of-state

Case 3: Compactness from phase-resolved spectroscopy: RBS1223

Markov-Chain Monte-Carlo fitting of XMM data on RBS1223 with our model

Constraining the equation of state

Radius of RX J1856: R = 17 km (at infinity)
first Trümper et al. 2004: $\mathrm{R}=17 \mathrm{~km}$. again by Walter, ... Lattimer, ... Neuhäuser et al. 2010, subm. Needs distance to +/-5\% Depends on atmo model!

M / R = 0.096 for X7 47 Tuc
(Heinke et al. 2006)
M / R = 0.096 for LMXRBs
(Suleimanov \& Poutanen 2006)
M / R = 0.089 for Cas A
(Wyn \& Heinke 2009)
M / R = 0.087 for RBS 1223
(Suleimanov, ...Neuhäuser et al. 2010: Model, Hambaryan, ..., Neuhäuser et al. in prep.: Obs fit) Independent of distance !!!

Next: further improvements on the model and

$\begin{array}{lllll}8 & 10 & 12 & 14 & 16\end{array}$ phase-resolved spectroscopy to get M/R for 6 more M7 Neutron Stars. In particular phase-resolved spectra for RXJ1856 \rightarrow M/R (in addition to R)

Part 2:

Identifying birth places
of young isolated neutron stars by tracing back their motion ...

SN in ScoCenLup triggered more star formation, cleared Local Bubble (?), and ...
 Rugel et al. 2009: 2.62 Myrs 60Fe half-life

Find young NS which was born in that SN \rightarrow distance and exact timing of SN
(+ progenitor star mass to test SN yield of 60Fe) ... feasible due to NS cooling curves ... few Myrs ...

Isolated young neutron stars

 traced back to their place of originNina Tetzlaff (Jena) Now 1 Myr ago

1 Myr ago

galactic longitude

*

M7 Neutron Star with known proper motion M7 Neutron Star w/o known proper motion

Identifying birth places of young isolated neutron stars

Method
OB asstracing back stars and associations in Galactic potential
Neutron find closest encounter with association or run-away star or Bubble in the past
Runa

- repeating procedure with varying the observables within their confidence intervals (Monte-Carlo simulation) with rad. vel. from NS space velocity distribution
\rightarrow probability distribution for seperation between neutron star and run-away star

Figure 1. (a) Distribution of minimum separations $d_{\min }$ of the 5367 runs for which both objects were not farther than 10 pc from the US centre with updated pulsar data. Drawn as well are theoretical curves for 3D Gaussian distributions (equations 1 and 2$)$ with $\mu-00 n c$ and $\sigma-40 n c$ (solid) and

Abstract

Example: PSR B 1929+10 and runaway star ς Oph \rightarrow Probably at the same place $\approx 1 \mathrm{Myr}$ ago in UpSco (Hgwf01;, Tetzlaff et al. 2010)

Identifying birth places of young isolated neutron stars

RX J1856.5-3754

Table 4. Potential parent associations of RX J1856.5-3754. Columns 2 and 3 mark the boundaries of a 68 per cent area in the $\tau-d_{\min }$ contour plot for which the current neutron star parameters (Columns 4-7, radial velocity v_{r}, proper motion μ_{α}^{*} and μ_{δ} and parallax π) were obtained, and Columns 8-10 indicate the distance to the Sun d_{\odot} and equatorial coordinates ($\mathbf{J} 2000.0$) of the potential SN . Column 7 gives the space velocity (ejection speed) $v_{\text {space }}$ derived from proper motion and radial velocity. For the deduction of the values given in Columns 4-11, please see Appendix B.

Figure 4. Past trajectories for RX J1856.5-3754 and US projected on a Galactic coordinate system (for a particular set of input parameters consistent with Table 4). Present positions are marked with a star for the neutron star and a diamond for the association. The large circle reflects an association radius of 15 pc .

Identifying birth places of young isolated neutron stars

RX J0720.4-3125

Table 6. Potential parent associations of RX J0720.4-3125, columns as in Table 4.

${ }^{60}$ Fe found in Earth's crust (rel. low mass progenitor of $\approx 10 \mathrm{M}_{\text {Sun }}$ not inconsistent with present mass function of TWA)

Tetzlaff, Neuhäuser, Hohle, Maciejewski 2010 MNRAS

Figure 6. Past trajectories for RX J0720.4-3125 and $\operatorname{Tr} 10$ and TWA, respectively, projected on a Galactic coordinate system (for particular sets of input parameters consistent with Table 6). Present positions are marked with a star for the neutron star and a diamond for Tr 10 and an open circle for TWA. Large circles reflect association extensions (radii of 23 pc for Tr 10 and 33 pc for TWA).

Our kinematic ages fit cooling curves better than characteristic ages

Figure 12. The four M7 members inserted into a cooling diagram. Filled stars mark the characteristic spin-down age (see Table 3) whereas horizontal lines characterize an area of the kinematic age (lower and upper values from associations in tables of Section 5). Open diamonds show the kinematic age for the associations summarized in Table 12. Effective temperatures can be found in Table 13. The purple set of cooling curves was adopted from Popov et al. (2006) (solid lines, for masses of $1.05,1.13,1.22,1.28,1.35$, $1.45,1.55,1.65$ and $1.75 \mathrm{M}_{\odot}$ from top to bottom; model from Grigorian, Blaschke \& Voskresensky 2005), the green set has been kindly provided by A. D. Kaminker (dashed lines, includes superconductive protons and

Tetzlaff, Neuhäuser, Hohle, Maciejewski 2010 MNRAS

Another test of Equations-of-State (in cooling models)

Isolated young neutron stars traced back to their place of origin:
Problems: RV ? more than one cluster possible ? Hence, we need additional evidence ...

galactic longitude

Compare(d) NS traces with OB associations, Next also: gamma sources, SNRs, Bubbles, run-away stars, ...

M7 Neutron Star with known proper motion

*M7 Neutron Star w/o known proper motion

Isolated young neutron stars

traced back to their place of origin

Gamma map from
Diehl et al. (2006) for 26Al

Compare NS traces with
OB associations, gamma sources, SNRs, run-away stars, Bubbles ...

DFG SFB / TR 7

Grav. Waves

\rightarrow Constraints on the EoS possible from X-ray and optical observations, more coming soon ...

Figure 6. Past trajectories for RX J0720.4-3125 and Tr 10 and TWA, respectively, projected on a Galactic coordinate system (for particular sets of input parameters consistent with Table 6). Present positions are marked with a star for the neutron star and a diamond for $\operatorname{Tr} 10$ and an open circle for TWA. Large circles reflect association extensions (radii of 23 pc for Tr 10 and 33 pc for TWA).
\rightarrow Identification of birth places of young nearby neutron stars seems possible, but no clear case yet. More evidence being searched for, e.g. run-away stars and gamma sources
\rightarrow If the Neutron Star can be found that was born in the SN that placed 60Fe on Earth crust, then we get time and distance of SN.
end

Optical brighter than expected: The optical excess

RX J1856

(Pons, ..., Neuhäuser et al. 2002)

RX J0720
Faktor ~ 5
Motch \& Haberl (1998) Motch et al. (2004)

RBS1223
Faktor < 5
Kaplan et al. (2001) Haberl et al. (2004)

Gould Belt as laboratory to study Life cycle of stars and matter

Identifying birth places of young isolated neutron stars
 The Guitar Pulsar

Table 2. Potential parent associations of the Guitar pulsar (PSR B2224+65).

Association	$d_{\text {min }}$ (pc)	τ (Myr)	v_{r} $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	μ_{α}^{*} $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$	μ_{δ} $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$	π (mas)	d_{\odot} (pc)	α $\left({ }^{\circ}\right)$
Vul OB1 a	$28-110$	$1.06-1.18$	193_{-73}^{+70}	144 ± 3	112 ± 3	$0.52_{-0.02}^{+0.02}$	$2477-2630$	$295.82_{-0.66}^{+1.00}$
NGC 6823 b	$25-107$	$0.95-1.07$	349_{-75}^{+102}	144 ± 3	112 ± 3	$0.52_{-0.01}^{+0.02}$	$2230-2390$	$295.97_{-0.83}^{+0.83-26.2}$
Cyg OB3 c	$20-65$	$0.74-0.82$	-27_{-70}^{+81}	144 ± 3	112 ± 3	$0.52_{-0.01}^{+0.01}$	$2285-2385$	$302.08_{-0.53}^{+0.84}$
Cyg OB1 d	$45-82$	$0.50-0.57$	867_{-143}^{+161}	144 ± 3	111 ± 3	$0.52_{-0.02}^{+0.02}$	$1640-1760$	$303.35_{-0.52}^{+0.35}$

high transverse velocity (>1500 km/s) and well investigated bow shock
(Chatterjee \& Cordes 2004) \rightarrow suggest $v_{r} \approx 0 \mathrm{~km} / \mathrm{s}$

Kinematic age (0.8 Myr) < characteristic age (1.1 Myr)
\rightarrow Cyg OB3 most probable parent association
\rightarrow For 8 Myr cluster age, progenitor mass 21-37 Sun (Tetzlaff, Neuhäuser, Hohle 2009 MNRAS)

Identifying birth places of young isolated neutron stars

Runaway stars

- former companions of neutron star progenitors (Binary Supernova Scenario, Blaauw 1961) or
- ejected from young dense massive stellar clusters (Dynamical Ejection Scenario, Poveda et al. 1967)
$>$ two stellar populations (Stone 1979):
- normal Population I stars (typically low peculiar space velocities)
- runaway stars (typically larger peculiar space velocities)
- approximately 2700 runaway stars (members of the high velocity group, dashed-dotted line) found in the Hipparcos catalogue (Tetzlaff, Neuhäuser, Hohle 2010, submitted)

Figure 1. Distribution of the peculiar space velocity $v_{\text {pec }}$. The dashed curve shows the distribution for the low velocity group whereas the dashed-dotted curve is for the high velocity group. The two curves intersect at $v_{p e c}=$ $28 \mathrm{~km} / \mathrm{s}$. The total distribution as the sum of the two is represented by the full line.
Tetzlaff, Neuhäuser, Hohle 2010, submitted

Identifying birth places

of neutron stars:

Next steps

\rightarrow Calculate past flight path for all (~ 54) young ($<50 \mathrm{Myr}$) nearby ($<3 \mathrm{kpc}$) neutron stars (so far 5 NS done).
\rightarrow Compare to catalog of super nova remnants.
\rightarrow Compare NS flight path to Associations/Clusters and the Local Bubble and other bubbles
\rightarrow Compile catalog of massive young run-away stars (which formed in super novae in binaries) (ongoing) and compare NS flight path to flight path of all (~ 2700) run-away stars
\rightarrow Compare with catalog of 26 Al gamma-ray sources (due to SN).

Magnificent Seven Neutron Stars P - P dot diagram

(from ATNF 15 May 2010)

Deep optical and infrared imaging
of isolated neutron star RXJ0720

No detection of RXJ0720 in the near infrared.

Upper limits for companions 15 Jup masses (Posselt, Neuhäuser, Haberl 2009 A\&A)

Mass determination would be possible via companions and/or with gravitational lensing when NS moves before background star ...

First detection of RXJ0720 in V band. New/better position and proper motion. (Eisenbeiss, ..., Neuhäuser et al. 2010 AN)

$\log N-\log S$

RXJ1856

Hubble Space Telescope $\mathrm{V}=25.7 \mathrm{mag}$ (and blue)

3 times with Hubble Space Tél. (Walter 2002

Walter, Wolk, Neuhäuser 1996 Nature

