Extreme ⁵⁴Cr-rich oxide grains in meteorites: Evidence for a single late supernova injection into the Solar System

Larry Nittler, Liping Qin, Conel Alexander Jianhua Wang, Rick Carlson Carnegie Institution of Washington

> Frank Stadermann Washington University

Endemic Cr isotopic anomalies in the Solar System

Qin et al., GCA, 2010 (see also Rotaru et al, 1992, Podosek et al. 1997, Trinquier et al 2007, etc)

Origin of Cr isotopic heterogeneity?

• Cosmogenic?

–Galactic cosmic ray-induced spallation of Fe in high Fe/Cr materials can produce correlated ⁵⁴Cr and ⁵³Cr excesses (Qin et al. GCA 2010)

• Nucleosynthetic?

-⁵⁴Cr made in low-entropy NSE in some SNIa; ncapture in SNII. Carried by presolar SN grains?

Origin of Cr isotopic heterogeneity?

• Cosmogenic?

–Galactic cosmic ray-induced spallation of Fe in high Fe/Cr materials can produce correlated ⁵⁴Cr and ⁵³Cr excesses (Qin et al. GCA 2010)

• Nucleosynthetic?

-⁵⁴Cr made in low-entropy NSE in some SNIa; ncapture in SNII. Carried by presolar SN grains?

–YES, we have identified sub-μm Cr-oxide grains with extreme ⁵⁴Cr enrichments in acid residue of Orgueil meteorite (Qin *et al.*, submitted)

- Most likely formed in Type II supernova(e)
- Implications for formation of Solar System

Experimental

- Analyze acid-resistant residue of Orgueil Cl meteorite
 - Very high density of grains on sample mount
 - Mostly sub-µm Cr-rich oxides and some SiC
- NanoSIMS imaging of Cr isotopes (+Ti, Fe)
 - 500-1000 nm O⁻ beam
 - "isotope dilution"
 significant problem!

Cr Results

- Have identified 10 ⁵⁴Crenriched grains
- ⁵⁰Cr/⁵²Cr normal
- ⁵³Cr/⁵²Cr normal, except 10
 for slight depletion in 5
 one grain 5

Degraded spatial resolution means anomalies are lower limits!

Dilution of Cr-Isotope Signatures

- Estimate true, un-diluted compositions of grains with simulated ion images based on high-res Cs⁺ or SEM images
- Grain 7-10:
 - Excellent match
 with "true"
 ⁵⁴Cr/⁵²Cr≈54 x
 Solar!
 - Same procedure on other grains also implies very high values

Extreme dilution means that many grains missed in surveys (higher abundance)

Mineralogy

• Use scanning Auger spectroscopy and SIMS to infer grain chemical compositions

7-10 (100 nm) δ⁵⁴Cr~53,000 ‰ Cr, O, Al 8-3 (80 nm) δ⁵⁴Cr> 20,000 ‰ Cr, O

6-4 (multiple 100-400 nm Al- or Fe-rich Cr-oxides) δ^{54} Cr> 11,000 ‰

Origin of ⁵⁴Cr-rich Grains?

- Grain 7-10
 - Inferred
 ⁵⁴Cr/⁵²Cr=54 × •
 - lower limit $\sim 20 \times \odot$
- Cannot be explained by AGB stars (⁵⁴Cr/⁵²Cr<2×
 Or spallation

Origin of ⁵⁴Cr-rich Grains?

- Type la supernovae?
 - "Normal Ia": Max
 ⁵⁴Cr/⁵²Cr ~ 5 × ⊙
 (Iwamoto et al. 1999, Travaglio et al. 2004)
 - "C deflagration la": Much higher ⁵⁴Cr, but extremely unusual chemistry (unlikely to form oxides) [Meyer *et al.* 1996, Woosley 1997]

Origin of ⁵⁴Cr-rich Grains?

- Type II supernova?
 - 7-10 composition
 consistent with
 Type II SN ¹⁶O-rich
 zones (s-process)
 - Extremely ¹⁶O rich (consistent
 with meas., but
 inconclusive)

 Also ⁵³Cr-rich and ⁵⁰Cr-poor
 New type of supernova presolar grain

Supernova oxides/silicates

Supernova oxides/silicates

- Majority of grains on single mixing line
 - Mixing in jets?
- SNe heterogeneous, single mixing line suggests special circumstances, probably a single supernova parent for most grains (Nittler et al. 2008)

Supernova oxides/silicates

- Majority of grains on single mixing line
 - Mixing in jets?
- SNe heterogeneous, suggests special circumstances, probably a single supernova parent for most grains (Nittler *et al.* 2008)
 - ⁵⁴Cr rich grains
 should lie on same
 line

Implications for Solar System

- Heterogeneous distribution of SN grains in solar system?
 - Bulk variations in Cr isotopes in different meteorite classes explained by varying amounts of SN ⁵⁴Cr-rich grains
 - ¹⁸O-rich (SN) presolar silicates more abundant in cometary (e.g. IDPs) than asteroidal samples (meteorites)
 - Supports direct injection of SN material into already-formed disk (Ouellette, Desch & Hester 2007, 2010)

Conclusions

- Orgueil acid residue rich in isotopically highly anomalous presolar oxide grains (⁵⁴Cr-rich as well as O-anomalous grains)
 - Isotopic measurements severely affected by poor spatial resolution
- ⁵⁴Cr-rich grains small (≤100nm) and inferred to have extreme enrichments (up to >50 x Solar)
- C, Ne, O burning zones of Type II SN most likely source
 - New type of presolar supernova grain
- Likely significant source of Cr isotope variations in bulk meteorites
 - Supports model of direct SN injection into early solar system.