

Proton capture reaction cross section measurements on <sup>162</sup>Er for the astrophysical γ-process



Özkan N.<sup>1,2</sup>, Güray R.<sup>1,2</sup>, Yalçın C.<sup>1</sup>, Kutlu S.<sup>1</sup>

Tan W.<sup>2</sup>, Falahat S.<sup>2</sup>, Calderon S.<sup>2</sup>, deBoer R.<sup>2</sup>, Li Q.<sup>2</sup>, Sonnabend K.<sup>2,6</sup>, Sauerwein A.<sup>2,7</sup>, Görres J.<sup>2</sup>, Wiescher M.<sup>2</sup>

Gyürky G.<sup>3</sup>, Fülöp Z.<sup>3</sup>, Somorjai E.<sup>3</sup>

Lee H.<sup>4</sup>, Greene J.<sup>4</sup>,

### Rauscher T.<sup>5</sup>

- (1) Kocaeli University, Department of Physics, Kocaeli, TURKEY
- (2) University of Notre Dame, Department of Physics, Indiana 46556, USA
- (3) Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, HUNGARY
- (4) Argonne National Laboratory, Illinois 60439, USA
- (5) University of Basel, Department of Physics, CH-4056 Basel, SWITZERLAND
- (6) Institut fur Kernphysik, Techische Universitat Darmstadt, Darmstadt, GERMANY
- (7) Institut fur Kernphysik, Universitat zu Koln, Koln, GERMANY











# Reaction Rate $\langle \sigma v \rangle$

$$\langle \sigma v \rangle_{12} = \left(\frac{8}{\pi \mu_{12}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} \sigma_{12} E_{12} \exp\left(-\frac{E_{12}}{kT}\right) dE_{12}$$

$$\langle \sigma v \rangle_{34} = \left(\frac{8}{\pi \mu_{34}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} \sigma_{34} E_{34} \exp\left(-\frac{E_{34}}{kT}\right) dE_{34}$$

Entrance Channel

Exit Channel (inverse reaction)

$$\frac{\langle \sigma v \rangle_{34}}{\langle \sigma v \rangle_{12}} = \frac{(2J_1 + 1)(2J_2 + 1)(1 + \delta_{34})}{(2J_3 + 1)(2J_4 + 1)(1 + \delta_{12})} \left(\frac{\mu_{12}}{\mu_{34}}\right)^{3/2} \exp\left(-\frac{Q}{kT}\right)$$

Net reaction rate:

$$r = r_{12} - r_{34} = \frac{N_1 N_2}{1 + \delta_{12}} \langle \sigma v \rangle_{12} - \frac{N_3 N_4}{1 + \delta_{34}} \langle \sigma v \rangle_{34}$$

$$= \underbrace{\langle \sigma \nu \rangle_{12}}_{1+\delta_{12}} N_1 N_2 - N_3 N_4 \frac{(2J_1+1)(2J_2+1)}{(2J_3+1)(2J_4+1)} \left(\frac{\mu_{12}}{\mu_{34}}\right)^{3/2} \exp\left(-\frac{Q}{kT}\right)$$

The modeling of p-process nucleosynthesis requires a large network of thousands of nuclear reactions involving stable and unstable nuclei.

The relevant astrophysical reaction rates derived from the reaction cross sections are necessary inputs to the p-process nucleosynthesis modeling.

### **P-process studies rely on the theory**



 $^{112}Sn(\alpha,\gamma)^{116}Te$ N. Özkan et al., Phys. Rev. C 75, 025801 (2007) $^{113}In(\alpha,\gamma)^{116}Sb$ C. Yalçın et al., Physical Review C 79, 065801 (2009) $^{120}Te(p,\gamma)^{121}I$ R. T. Güray et al., Physical Review C 75, 025801 (2009)

Cu Ni □

Co Fe

<sup>114,115,116</sup>Sn(p, $\gamma$ )<sup>115,116,117</sup>Sb and <sup>114,115</sup>Sn( $\alpha$ , $\gamma$ )<sup>118,119,120</sup>Te

An excellent case for testing the reliability of the Hauser-Feshbach prediction near the closed proton shell Z = 50 *Analyses are under process* 



## List of p-nuclei with their solar and isotopic abundances



|         |         |            | Nucle              | eus 7             | Abund                  | ance              | Is                 | otopic              |                     | Nucle               | us A                | bunda                 | nce                   | Iso      | topic                 |                    |          |        |         |
|---------|---------|------------|--------------------|-------------------|------------------------|-------------------|--------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|----------|-----------------------|--------------------|----------|--------|---------|
|         |         |            |                    |                   | [Si = 1]               | $10^{6}$ ]        | abuno              | lance               | (%)                 |                     | [                   | Si = 1                | $0^{6}$ ]             | abund    | ance (                | %)                 |          |        |         |
|         |         |            | $^{74}Se$          | е                 | 0.53                   | 5                 |                    | 0.88                |                     | <sup>132</sup> Ba   | £                   | 0.0045                | 53                    | C        | ).10                  |                    |          |        |         |
|         |         |            | $^{78}K$           | r                 | 0.15                   | 3                 |                    | 0.34                |                     | $^{138}Le$          | a (                 | 0.0004                | 09                    | C        | 0.09                  |                    |          |        |         |
|         |         |            | $^{84}Si$          | r                 | 0.13                   | 2                 |                    | 0.56                |                     | $^{136}Ce$          | е                   | 0.0021                | 16                    | 0        | 0.19                  |                    |          |        |         |
|         |         |            | $^{92}M$           | 0                 | 0.37                   | 8                 | ]                  | 4.84                |                     | $^{138}Ce$          | е                   | 0.0028                | 84                    | 0        | 0.25                  |                    |          |        |         |
|         |         |            | $^{94}M$           | 0                 | 0.23                   | 6                 |                    | 9.25                |                     | $^{144}Sn$          | a                   | 0.008                 | 3                     | 3        | 3.10                  |                    |          |        |         |
|         |         |            | $^{96}R$           | u                 | 0.10                   | 3                 |                    | 5.52                |                     | $^{152}Ge$          | 1                   | 0.0006                | 66                    | 0        | ).20                  |                    |          |        |         |
|         |         |            | $^{98}R$           | u                 | 0.03                   | 5                 |                    | 1.88                |                     | $^{156}$ Dy         | y (                 | 0.0002                | 21                    | 0        | ).06                  |                    |          |        |         |
|         |         |            | $^{102}P$          | d                 | 0.014                  | 42                |                    | 1.02                |                     | $^{158}$ Dy         | y (                 | 0.0003                | 78                    | 0        | ).10                  | Go                 | od c     | andic  | lates   |
|         |         |            | $^{106}\mathrm{C}$ | d                 | 0.020                  | 01                |                    | 1.25                |                     | $^{162}E_{1}$       | r (                 | 0.0003                | 51                    | 0        | ).14                  |                    |          |        |         |
|         |         |            | $^{108}\mathrm{C}$ | d                 | 0.014                  | 43                |                    | 0.89                |                     | $^{164}\text{Ee}$   | r                   | 0.0040                | )4                    | 1        | .61                   |                    |          |        |         |
|         | d       | ono        | $^{113}I$          | n                 | 0.007                  | 79                |                    | 4.3                 |                     | 168 Y               | o (                 | 0.0003                | 22                    | 0        | ).13                  |                    |          |        |         |
|         |         | one        | $^{112}S$          | n                 | 0.037                  | 72                |                    | 0.97                |                     | $^{174}\mathrm{H}$  | f                   | 0.0002                | 49                    | 0        | ).16                  |                    |          |        |         |
|         |         |            | $^{114}S$          | n                 | 0.025                  | 52                |                    | 0.66                |                     | $^{180}\mathrm{Te}$ | a 2                 | $.48 \cdot 1$         | $0^{-6}$              | 0        | 0.01                  |                    |          |        |         |
|         |         |            | $^{115}S$          | n                 | 0.012                  | 29                |                    | 0.34                |                     | $^{180}W$           | 7                   | 0.0001                | 73                    | 0        | ).13                  |                    |          |        |         |
|         |         |            | $^{120}T$          | le l              | 0.004                  | 43                |                    | 0.09                |                     | $^{184}Os$          | s (                 | 0.0001                | 22                    | 0        | 0.02                  |                    |          |        |         |
|         |         |            | $^{124}X$          | le                | 0.005                  | 71                |                    | 0.12                |                     | $^{190}Pt$          | t                   | 0.0001                | 17                    | 0        | ).01                  |                    |          |        |         |
|         |         |            | $^{126}X$          | le                | 0.005                  | 09                |                    | 0.11                |                     | $^{196}H_{2}$       | 5                   | 0.0005                | 52                    | 0        | 0.15                  |                    |          |        |         |
|         |         |            | $^{130}B$          | a                 | 0.004                  | 76                |                    | 0.11                |                     |                     |                     |                       |                       |          |                       |                    |          |        |         |
| caesium | barium  |            | lutedium           | hafnium           | tantalum               | tungsten          | rhenium            | osmium              | iridium             | platinum            | goid                | mercury               | thallium              | lead     | bismuth               | polonium           | astatine | radion |         |
| 55      | 56      | 57-70<br>★ | 71                 | 72                | 73                     | 74                | 75                 | 76                  | 77                  | 78                  | 79                  | 80                    | 81                    | 82<br>Dh | 83                    | 84                 | 85       | 86     |         |
| 132.91  | 137,33  |            | 174.97             | 178,49            | 180.95                 | 183.84            | 186,21             | 190,23              | 192.22              | 195.08              | 196.97              | 200.59                | 204.38                | 207.2    | 208.98                | 12091              | [210]    | 12221  |         |
| 87      | 88      | 89-102     | 103                | 104               | 105                    | 106               | 107                | 108                 | 109                 | 110                 | 111                 | 112                   |                       | 114      |                       |                    |          |        |         |
| Fr      | Ra      | × 1        | Lr                 | Rf                | Db                     | Sg                | Bh                 | HS                  | Mt                  | Uun                 | Uuu                 | Uub                   |                       | Uuq      |                       |                    |          |        |         |
| [44-0]  | [220]   |            | [244]              | [201]             | 1504                   | Ra                | re Ear             | th                  | [Neo]               | Es.1                | [ere]               | 1217                  |                       |          |                       |                    | _        |        |         |
|         |         |            | 57                 | 58                | praseodymium<br>59     | neodymium<br>60   | promethium<br>61   | 62                  | europium<br>63      | 64                  | terbium<br>65       | 66                    | holmium<br>67         | 68       | fruium<br>69          | 70                 |          |        |         |
|         | *lantha | anoids     | La                 | Се                | Pr                     | Nd                | Pm                 | Sm                  | Eu                  | Gd                  | Tb                  | Dy                    | Hd                    | Er       | <b>J</b> m            | Yb                 |          | n-     | nuclei  |
|         |         |            | 138.91<br>actinium | 140.12<br>thorium | 140.91<br>protactinium | 144.24<br>uranium | [145]<br>neptunium | 150.36<br>plutonium | 151.96<br>americium | 157.25<br>curium    | 158.93<br>berkelium | 162.50<br>californium | 164.93<br>einsteinium | 167.26   | 168.93<br>mendelevium | 173.04<br>nobelium |          | P      | 1100101 |
|         | **actin | oids       | Ac                 | Th                | Pa                     | U                 | Np                 | Pu                  | Åm                  | Cm                  | Bk                  | Cf                    | Es                    | Fm       | Md                    | No                 |          |        |         |
|         |         | -          | [227]              | 232.04            | 231.04                 | 238.03            | [237]              | [244]               | [243]               | [247]               | [247]               | [251]                 | [252]                 | [257]    | [258]                 | 12591              | J        |        |         |



### **Experimental measurements by activation method**



## Kocaeli University Nuclear Astrophysics Group



"Türkiye'nin çağdaş Cumhuriyet üniversitelerinden birisi olan Kocaelî Üniversitesi, 21.yüzyılın bilgi değerlerine sahip bir üniversite olmak için çalışıyor.."

## University of Notre Dame Nuclear Science Laboratory





Notre Dame Campus, South Bend, Indiana

3 accelerators +  $\odot$ (JN – 1MV, KN – 4 MV, FN Tandem – 12 MV)

Astrophysics, nuclear structure and reactions, RNB (radioactive nuclear beams)



M. Wiescher

J. Görres

W. Tan

### **Nuclear Science Laboratory, University of Notre Dame**

- 1. SNICS Ion Source
- 2. HIS Ion Source
- 3. FN Van de Graaff Accelerator
- 4. Gamma Spectroscopy Beamline
- 5. Spectrograph Beam Line
- R2D2 Beam Line (1 m scattering chamber)
   Weak Interaction Beam Line
- 8. RNB Beam Line
- 9. Neuton Detection Wall

- 10. Conference Room
- 11. Accelerator Control Consoles
- 12. ECR Ion Source Test Setup
- 13. KN Van de Graaff Accelerator
- 14. JN Van de Graaff Accelerator
- 15. ORTEC Scattering Chamber 16. Windowless Gas Target Beam Line
- 17. Gamma Table



# Activation Setup



Energy range from  $\sim 4 \text{ MeV}$  to 9 MeV

Enriched targets

8 Evaporated targets on C backings: 70-130  $\mu$ g/cm<sup>2</sup>

Beam current : 70-300 nA

Target stability monitored with RBS during the irradiation The beam current was recorded with a current integrator





Changes in the current were taken into account in the analysis

# **Counting Setup**



Good energy resolution High efficiency detection



ru sineiung

(b)

# **Counting Setup**







Proton capture reactions of Lantanides

|        | <b>(p</b> ,γ <b>)</b>                                                                                | <b>(</b> p,n <b>)</b>                                                                                     |
|--------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Ce-136 | <b>1.28h</b> 353.69 (0.58%)- 433.89(1.28%) <b>9h</b><br>447.15(1.68%) 436.59(0.25%)                  | <b>13.1min</b> 461.0 (7.7 %) -539.75 (52.4 %)-<br>552.16 (76 %) -1092.3(18.5 %)                           |
| Ce-138 | <b>4.41h</b> 255.11 (0.236 %) -1347.33 (0.47 %)<br><b>137.64d</b> 165.86 (80 %)                      | <b>1.45min</b> 788.7 (2.4 %)                                                                              |
| Gd-152 | <b>2.34d</b> 212 (31 %)-109.76 (6.8%)-102.26 (6.4 %)                                                 | <b>17.5h</b> 271.08 (8.6 %)-344.28 (65 %)-586.29 (9.4 %)<br><b>4.2min</b> 344.26 (20.1%)- 411.1 (18.2 %)  |
| Gd-154 | <b>5.32d</b> 86.55 (32%)-105.32 (25.1%)-262.27 (5.3%)                                                | <b>21.5h</b> 123.07 (26 %)-557.60 (5.4 %)-722.12 (7.7 %)-<br>1274.44 (10.5 %)                             |
| Dy-156 | <b>12.6min</b> 279.97 (22.7 %) - 341.16(7.5 %) -<br>896.6 (4 %)                                      | 56min no gamma                                                                                            |
| Dy-158 | <b>33.05min</b> 121.01 (36.2 %) 131.97 (23.6 %)-<br>252.96 (13.7 %) 309.59 (17.2 %)- 838.63 (3.84 %) | <b>11.3min</b> 218.20 (67.1 %) -847.27 (22.5 %) -850.50 (14.3 %) -945.61 (25 %)-1790.62 (15.7 %)          |
| Er-162 | <b>1.81h</b> 69.23 (11.6 %)-104.32 (18.6 %)- 241.31<br>(10.9 %)— <b>75min</b>                        | <b>21.7min</b> 102.00(17.5 %)-227.5 (7 %)-798.68(8.4 %)                                                   |
| Er-164 | <b>30.06 h</b> 242.92 (35.5 %) <b>10.36h</b> no gamma                                                | <b>2</b> min 91.41 (6.7 %)- 208.04 (1.17 %)                                                               |
| Er-166 | <b>9.25d</b> 207,8 (42 %)                                                                            | <b>7.70h</b> 80.59 (11.5 %)-184.41 (16.2 %)- 705.33 (11.1%)-778.81 (19.1 %)-785.9 (10 %) 1273.54 (15.0 %) |

### **Reactions on<sup>162</sup>Er isotope**

 $(p,\gamma)$  and (p,n) reaction cross sections can be determined simultaneously in the same measurements

|    | 160Yb<br>4.8 М  | 161Yb<br>4.2 М  | 162Yb<br>18.87 M | 163Yb<br>11.05 M            | 164Yb<br>75.8 M                | 165Yb<br>9.9 M  | 166Yb<br>56.7 H  | 167Yb<br>17.5 М       | 168Yb<br>STABLE |
|----|-----------------|-----------------|------------------|-----------------------------|--------------------------------|-----------------|------------------|-----------------------|-----------------|
| z  | e: 100.00%      | €: 100.00%      | e: 100.00%       | e: 100.00%                  | €: 100.00%                     | e: 100.00%      | e: 100.00%       | e: 100.00%            | 0.13%           |
|    |                 |                 |                  |                             |                                |                 |                  |                       |                 |
|    | 159Tm<br>9.13 M | 160Tm<br>9.4 M  | 161Tm<br>30.2 M  | <sup>162</sup> ( <b>p</b> , | 1)163Tm<br>1.810 н             | 164Tm<br>2.0 M  | 165Tm<br>30.06 H | 166Tm<br>7.70 H       | 167Tm<br>9.25 D |
| 69 | e: 100.00%      | e: 100.00%      | e: 100.00%       | e: 100                      | <ul> <li>€: 100.00%</li> </ul> | e: 100.00%      | e: 100.00%       | e: 100.00%            | €: 100.00%      |
|    |                 |                 |                  |                             |                                |                 |                  |                       |                 |
|    | 158Er<br>2.29 H | 159Er<br>36 M   | 160Er<br>28.58 H | 161Er<br>3.21 H             | 162Er<br>STABLE                | 163Er<br>75.0 M | 164Er<br>STABLE  | 165Er<br>10.36 H      | 166Er<br>STABLE |
| 68 | e: 100.00%      | e: 100.00%      | e: 100.00%       | e: 100.00%                  | 0.139%                         | e: 100.00%      | 1.601%           | e: 100.00%            | 33.503%         |
|    |                 |                 |                  |                             |                                |                 |                  |                       |                 |
|    | 157Ho<br>12.6 M | 158Ho<br>11.3 M | 159Ho<br>33.05 M | 160Ho<br>25.6 M             | 161Ho<br>2.48 H                | 162Ho<br>15.0 M | 163Ho<br>4570 Y  | 164Ho<br>29 M         | 165Ho<br>STABLE |
| 67 | e: 100.00%      | e: 100.00%      | e: 100.00%       | e: 100.00%                  | e: 100.00%                     | e: 100.00%      | e: 100.00%       | €: 60.00%             | 100%            |
|    |                 |                 |                  |                             |                                |                 |                  | p=. 40.00%            |                 |
|    | 156Dy<br>STABLE | 157Dy<br>8.14 H | 158Dy<br>STABLE  | 159Dy<br>144.4 D            | 160Dy<br>STABLE                | 161Dy<br>STABLE | 162Dy<br>STABLE  | 163Dy<br>STABLE       | 164Dy<br>STABLE |
| 66 | 0.06%           | e: 100.00%      | 0.10%            | e: 100.00%                  | 2.34%                          | 18.91%          | 25.51%           | 24.90%<br>β-: 100.00% | 28.18%          |
|    |                 |                 |                  |                             |                                |                 |                  |                       |                 |
|    | 90              | 91              | 92               | 93                          | 94                             | 95              | 96               | 97                    | N               |

6 stable isotopes of Erbium - Enriched isotopes are needed!

www.nndc.bnl.gov/**nudat**2/



### ISOFLEX USA

P. O. Box 29475 San Francisco CA 94129 USA Tel: 415-440-4433 Fax: 415-563-4433 Email: iusa@isoflex.com EIN: 208066748

### CERTIFICATE of ANALYSIS



#### CUSTOMER:

University of Notre Dame Attn: Dr. Nalan Guray 124/Physics CR1 Nieuland Science Center 116 Maintenance Center, Building NIEU Notre Dame, IN 46556-5688 Tel: 574-631-8204

#### CERTIFICATE NO.: 68-02-162-1177

CUSTOMER ORDER NO.: Per Dr. Guray's emails dated June 2, 2009

The description, isotopic distribution and chemical admixtures relating to the above referenced order number are certified to be as follow:

### Description

| 28.80%        |                                                            |
|---------------|------------------------------------------------------------|
| 40 mg         |                                                            |
| Oxide (Er2O3) |                                                            |
|               | 28.80%<br>40 mg<br>Oxide (Er <sub>2</sub> O <sub>3</sub> ) |

### Isotopic Distribution

| ISOTOPE     | Er-162 | Er-164 | Er-166 | Er-167 | Er-168 | Er-170 |
|-------------|--------|--------|--------|--------|--------|--------|
| CONTENT (%) | 28.2   | 7.41   | 32.24  | 14.26  | 12.26  | 5.63   |

### **Chemical Admixtures**

| ELEMENT     | к     | Na      | Ca    | Mg    | Fe     | Si    | AI      | Cr    | Cu      | Pb     |
|-------------|-------|---------|-------|-------|--------|-------|---------|-------|---------|--------|
| CONTENT (%) | 0.004 | < 0.002 | 0.005 | 0.004 | <0.005 | 0.005 | < 0.005 | 0.03  | < 0.005 | <0.005 |
| ELEMENT     | Sn    | Gd      | Tb    | Dy    | Но     | Yb    | Tm      | Lu    | ]       |        |
| CONTENT (%) | 0.02  | 0.06    | 0.06  | 0.11  | <0.1   | <0.04 | < 0.05  | <0.06 |         |        |



## Impurities in the target (higher half-lives)

| Isotopic distribution      | <b>(</b> p,γ)<br>Gamma Energies in keV ( <i>lγ</i> %)                                                        | (α,γ)                                                                                          |
|----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <sup>162</sup> Er(28.2%)   | <b>1,81h</b> 69.23 (11.6%)-104.32 (18.6%)<br>241.31 (10.9%) <b>75m</b> no gammas<br><b>4570y</b> 299 (77.9%) | <b>56.7h</b> 82.29 (15.55%)<br><b>7.70h</b> 80.585 (11.5%) -184.41<br>(16.2 %) -778.81 (19.1%) |
| <sup>164</sup> Er (7.41%)  | <b>30.06h</b> 242.92(35.5%)- 297.40(12.71%)→<br><b>10.36h</b> no gammas                                      | Х                                                                                              |
| <sup>166</sup> Er (32.24%) | <b>9.25d</b> 207 (42%)                                                                                       | X                                                                                              |
| <sup>167</sup> Er (14.26%) | <b>93d</b> 79.8 (10.8%)-184.3 (17.9%)-198.3 (53%)- 447.51 (23.7%)-720.4 (12%)                                | Х                                                                                              |
| <sup>168</sup> Er (12.26%) | X                                                                                                            | X                                                                                              |
| <sup>170</sup> Er (5.63%)  | Х                                                                                                            | Х                                                                                              |

Made our lives easier!

# $^{162}$ Er(p, $\gamma$ ) $^{163}$ Tm $\rightarrow$ $^{163}$ Er $\rightarrow$ $^{166}$ Ho $\rightarrow$ $^{163}$ Dy (stable)



| Reaction               | Product            | Half-life        | γ-Energy (keV) | γ- Intensity (%) |
|------------------------|--------------------|------------------|----------------|------------------|
| <sup>162</sup> Er(p,γ) | <sup>163</sup> Tm  | (1.81±0.05) h    | 69.23          | 11.6±0.3         |
|                        |                    |                  | 104.32         | 18.6±0.4         |
|                        |                    |                  | 241.31         | 10.9 ±0.3        |
| <sup>162</sup> Er(p,n) | <sup>162g</sup> Tm | (21.70±0.19) min | 102.00         | 17.57±0.07       |

Gamma Spectrum at 7 MeV for 30 minutes irradiation and 165 minutes counting





Comparision of the measured Cross Sections and the HF statistical model calculations for  ${}^{162}Er(p,\gamma){}^{163}Tm$ 



NS/Measurements : 0.6-3.1 TALYS/Measurements:1.7-2.5 http://nucastro.org/reaclib.html http://www.talys.eu



- counting statistics : 1 % 5 %
- detection efficiency : 3 %
- decay parameters : less than 3 %
- target thickness : 9 %
- beam energies : % 0,02 % 0,5



## Acknowledgement





- Joint Institute for Nuclear Astrophysics (JINA)
- The Scientific and Technical Research Council of Turkey TUBITAK : TBAG-108T508
- Hungarian Scientific Research Fund OTKA
- Kocaeli University BAP: 2007/36
- Our Collaborators









This is the early announcement for a p-process workshop taking place in Istanbul Supported by **JINA** (Joint Institute for Nuclear Astrophysics)

Hope to See you in Istanbul.

May 23<sup>rd</sup> - May 27<sup>th</sup>, 2011



Contact: Nalan Özkan Email: nozkan@kocaeli.edu.tr





# Thank you for your attention!



### http://apod.nasa.gov/apod/ap100615.html

### Starry Night Scavenger Hunt

Credit & Copyright : Original Painting: Vincent van Gogh; Digital Collage:

### **Ronnie Warner**

Explanation: Did you know that Van Gogh's painting Starry Night includes Comet Hale-Bopp?

Hopefully not, because it doesn't. But the above image does. Although today's featured picture may appear at first glance to be a faithful digital reproduction of the <u>original Starry Night</u>, actually it is a modern rendition meant not only to honor one of the most famous paintings of the second millennium, but to act as a <u>scavenger hunt</u>.

Can you find, in the above image, a comet, a spiral galaxy, an open star cluster, and a supernova remnant? Too easy? OK, then find, the rings of <u>Supernova 1987A</u>, the <u>Eskimo Nebula</u>, the <u>Crab Nebula</u>, <u>Thor's</u> <u>Helmet</u>, the <u>Cartwheel Galaxy</u>, and the <u>Ant Nebula</u>.

Still too easy?

Then please identify any more hidden images not mentioned here -- and there are several – on APOD's main discussion board: <u>Starship Asterisk</u>.

Finally, the collagist has graciously hidden <u>APOD's 10th anniversary Vermeer photomontage</u> to help honor <u>APOD</u> on its 15th anniversary tomorrow.