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. Introduction
l.I Observed systems

Double neutron star systems (DNYS) 10

(“certain + likely”, Lorimer (2008)
“likely= mass function + periastron advance consistent with
being a neutron star”)

Neutron star black hole systems (NSBH) 0

Expected galactic merger rates DNS:

i) from observed systems ~ 1.2 x 107% yr" (Kim 2007)
ii) from population synthesis: similar

BUT: uncertainties are large

for i): dependence of inspiral time on eccentricity
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rate could be larger by factor of a few (Chaurasia & Bailes 2005)
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i.e. highly eccentric system would escape observation,
rate could be |arger b)’ factor of a few (Chaurasia & Bailes 2005)

for ii) sensitive to poorly known parameters
(common envelope efficiency, initial separations etc)

evolution merger rate

: ; “best guesses”
estimates (incomplete)
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NSBH merger rate:

Bethe & Brown (1998): “ten times DNS rate”
Belcynsky et al. (2007): “0.01 times DNS rate”

sl 1ot accurately known
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®* magnetic fields - additional pressure
- stability central object against collapse
- transport of angular momentum

* hydrodynamics

- fluid instabilities/turbulence
- transport of angular momentum
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* How to ensure numerical
conservation of physically
conserved quantities !
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e Conformal Flatness Approximation (CFA)
(Isenberg 1978,Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

approach:

i) evolve hydrodynamics on given space-time,
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Pros

- exact for spherically symmetric systems
- at least | PN accurate
- more efficient than “full GR”
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Pros

- exact for spherically symmetric systems
- at least | PN accurate
- more efficient than “full GR”

Cons

- implicitly assumes “no gravitational waves in space-time”

s SRR
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e “Full GR’ (eg Shibata 2000, Duez 2009, Rezzolla et al. 2010...)

- foliate space-time into spacelike hypersurfaces
with constant coordinate time

- Einstein equations split up in constraint equations
(momentum & Hamiltonian constr.) and evolution equations

(for spatial metricYijand extrins. curvature of hypersurfaces ;)

- usually “free evolution schemes”: constraint
equations solved for initial conditions, during
evolution their violation is monitored

- two formulations of GR used:

i) Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
ii) generalized harmonic (GH) formulation (Garfinkle 2002, Pretorius 2005, ...)
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Pros
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Pros

- “first principles” approach

Cons

- new numerical methods involved
- very expensive: resolution restrictions

- poor controle over numerical conservation
- so far only very simple “micro-physics”, polytropic EOS
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“Further physics”

Equation of state (EOS):

- polytrope (.)
- piece-wise polytropic EOS (shibata et al. (2006), Read et al. (2009))
- P, T,Ye- dependent EOSs of Lattimer-Swesty & Shen et al.

(e.g. Ruffert et al. (1997), Rosswog et al. (1999), Rosswog et al. (2003), Oechslin et al. (2007),
Duez et al. (2010)...)

b UIZ er S Oechslin et al. (2004), Bauswein 2010)
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neutrino physics

- “|ea|(age SChemeS”(Ruffert et al. 1997, Rosswog & Liebendoerfer 2003).
a) cooling based on p, T,Yeand opacities
b) evolution of Y.

important: neutrinos “leaked out” at some location
of the fluid are NOT absorbed in other parts
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a) cooling based on p, T,Yeand opacities
b) evolution of Y.
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neutrino physics

- “leakage schemes” Ruffert et al. 1997, Rosswog & Liebendoerfer 2003);
a) cooling based on p, T,Yeand opacities
b) evolution of Y.

important: neutrinos “leaked out” at some location
of the fluid are NOT absorbed in other parts

- V; — Vj-annihilation as a post-processing step
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magnetic fields

- full merger simulations using Euler potentials

—
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with Lagrangian hydrodynamics
(Price & Rosswog (2006), Rosswog & Price (2007))
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magnetic fields

- full merger simulations using Euler potentials

B=Vax Vg

with Lagrangian hydrodynamics
(Price & Rosswog (2006), Rosswog & Price (2007))

- in grld based S|mulat|ons

- .l ’
~ (Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al.
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magnetic fields

- full merger simulations using Euler potentials

B=Vax Vg

with Lagrangian hydrodynamics
(Price & Rosswog (2006), Rosswog & Price (2007))

|n grid- based simulations
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 Morphology Double Neutron Star (DNS) merger

Friday, August 13, 2010



lll. The emerging patchwork picture

 Morphology Double Neutron Star (DNS) merger

t=.02 ms

Friday, August 13, 2010



lll. The emerging patchwork picture

 Morphology Double Neutron Star (DNS) merger

t=.02 ms

(Price & Rosswog, Science 312,719, 2006)
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lll. The emerging patchwork picture

 Morphology Double Neutron Star (DNS) merger

t=.02 ms

modeled physics:
* self-gravity (Newt.)
* gravitational waves
* gas dynamics
~® nuclear EOS (RMF; Shen

leakage)
lution

(Price & Rosswog, Science 312,719, 2006) Daniel Price

Stephan Rosswog
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lll. | “Collapse to a black hole”

e observed masses in double M>

e IS FINSTS O NN (DINNE 144 1.38 B1913+16
134 B1534+12
1.25 J0737-3039
1.18 J1756-2251

1.35 B2127411C
1.26 J1906-+0746
1.11 J1811-1736

1.05 J1518+-4904
1.36 J1829+-2456

e upper mass limit cold, non-rotating, isolated

neutron star
620G M@ = MmaX,TOV < 3.2 M@

(Freire et al. in prep.) (Roads & Ruffini 1974)
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“Collapse to a black hole

Yes, likely, but...
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e binary mass Mpns > Min: direct collapse to BH

collapse via “hyper-
Mpnsg < Min P yP y
massive neutron star

Mth ~ 135 MmaijOV 2 226M@ (Shibata & Taniguchi 2006)

» probably both types realized in nature

(can a stable neutron star remnant be safely

(]
|
| -\ 'L e 4
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Double Neutron Stars
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[11.2 Mass loss
Double Neutron Stars

e different types:
o
a) from interaction region: “hot” (~ 10 MeV)
b) from tidal tail: “cold” (~0.5 MeV)

o
. B a
SR
. !
Lo SRR
~ -;v

1.2 & 1.6M

-40
-40 30 -20 -10 0 10 20 30 40
X [km]

t=0.10958ms

(Oechslin et al. 2007,“CFA + Shen-EOS” )
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[11.2 Mass loss
Double Neutron Stars

e different types:
®
a) from interaction region: “hot” (~ 10 MeV)
b) from tidal tail: “cold” (~0.5 MeW)

o
. B a
SR
. !
Lo SRR
~ -;v

1.2 & 1.6M

1=0.10958ms
-40
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X [km]

(Oechslin et al. 2007,“CFA + Shen-EOS” )
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[11.2 Mass loss
Double Neutron Stars

e different types:
®
a) from interaction region: “hot” (~ 10 MeV)
b) from tidal tail: “cold” (~0.5 MeW)

. -
.0“' s
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e e
’ o’ i
4 5 ,":
Ny ",

1.2 & 1.6M

1=0.10958ms
-40
-40 30 -20 -10 0 10 20 30 40
X [km]

(Oechslin et al. 2007,“CFA + Shen-EOS” )
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[11.2 Mass loss
Double Neutron Stars

e different types:
®
a) from interaction region: “hot” (~ 10 MeV)
b) from tidal tail: “cold” (~0.5 MeW)

. -
.0“' s
oy
e e
’ o’ i
4 5 ,":
Ny ",

1.2 & 1.6M

1=0.10958ms
-40
-40 30 -20 -10 0 10 20 30 40
X [km]

(Oechslin et al. 2007,“CFA + Shen-EOS” )

(see later)
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® amounts:
(“CFA + Shen-EOS”, Oechslin et al. 2007)
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Friday, August 13, 2010



® amounts: Me; ~ 2 X 107 ...5 x 10 “ Mg
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2 x"1.4M 1.07 & 1.93M,

e tendencies:
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e tendencies:
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® amounts: Me; ~ 2 X 107 ...5 x 10 “ Mg
(“CFA + Shen-EOS”, Oechslin et al. 2007) \
1.07 & 1.93M,

e tendencies:

* “hot component” both in sym. (q=1) and asym. binaries
* “cold component” only for q # |

* gjecta mass increases with binary asymmetry
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Neutron star black hole systems

e Newtonian, low-mass BHs (Mpu < 10M )
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Neutron star black hole systems

e Newtonian, low-mass BHs (Mg < 10M )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer

example: My = 3 My, M, = 1.4 My, g = 0.466

neutron star transferring mass into BH
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Neutron star black hole systems

e Newtonian, low-mass BHs (Mg < 10M )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer

example: My = 3 My, M, = 1.4 My, g = 0.466

neutron star transferring mass into BH
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Neutron star black hole systems

e Newtonian, low-mass BHs (Mg < 10M )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer

example: My = 3 My, M, = 1.4 My, g = 0.466

neutron star transferring mass into BH  final disruption at ~ 220 ms

1500+

1000 A A A A A A 200 —4 : i . -
:'CIJC 00 600 400 -200 0 200 400 600 SO0 1000 ?'JJ.I 1300 1000 500 0 SO0 000 1500 2000

x [km]
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Neutron star black hole systems

e Newtonian, low-mass BHs (Mg < 10M )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer

example: My = 3 My, M, = 1.4 My, g = 0.466

neutron star transferring mass into BH  final disruption at ~ 220 ms

47 orbital
revolutions
until final
disruption !!
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* Pseudo-relativistic, high-mass BHs (Mg > 10 M)

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs,
ns disruption near ISCO

MgH\ Y3 6G Mg
Riiq ~ i ~ Risco =
nS

- ejecta masses from 0.01 to 0.2 M,

62
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* Pseudo-relativistic, high-mass BHs (Mg > 10 M)

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs,
ns disruption near ISCO

b (MHNY? o 6GMpy
tid M s ~ filsco = — 5

- ejecta masses from 0.01 to 0.2 M,

o Rece_nt GR NSBH-simuIations

» | L»
-4
e .
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 Pseudo-relativistic, high-mass BHs (Mpu > 10 M)

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs,
ns disruption near ISCO

b (MHNY? o 6GMpy
tid M5 FIEO = S 5

- ejecta masses from 0.01 to 0.2 M

e Recent GR NSBH-simulations [EiEcEuNERE

(courtesy: M. Duez)

(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)
¢ o

Evolution of a BHNS system with a BH spin initially inclined at
80° with respect to the orbital angular momentum.
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 Pseudo-relativistic, high-mass BHs (Mpu > 10 M)

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs,
ns disruption near ISCO

b (MHNY? o 6GMpy
tid M5 FIEO = S 5

- ejecta masses from 0.01 to 0.2 M

e Recent GR NSBH-simulations [EiEcEuNERE

(courtesy: M. Duez)

(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)
¢ o

- now stable numerical evolution
- NO quantitative agreement yet
- tendencies:

- less sensitive to EOS

- low-mass BHs: disks hotter &

more massive
R N hy Evolution of a BHNS system with a BH spin initially inclined at
= |al"gel" BH Sp|n: more massive dlSkS 80° with respect to the orbital angular momentum.
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1.3 “Central engines of short GRBs?”

* short bursts are really different:

a) duration ~ 0.3 s vs ~30 s

b) spectra (“harder”)

c) host galaxies: all types, I . [ R
including ellipticals T~ R ZHST Images

Fong, Berger
& Fox 2010

d) burst often offset from
candidate host

e) redshift distribution

f) NO supernova connection R
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...so far all plausibly explained by compact binary merger
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...so far all plausibly explained by compact binary merger

GRB X-ray activity
Short GRBs

o.\

grb 051210 H

iy

RS

(Gehrels et al. 2009)
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...so far all plausibly explained by compact binary merger

GRB X-ray activity

Short GRBs “late-time activity”

o.\

grb 051210 H

iy

S
arb 051221a

10 10°
time [s]
(Gehrels et al. 2009)
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...so far all plausibly explained by compact binary merger

GRB X-ray activity

Short GRBs “late-time activity”

central engine
still active?

o.\

grb 051210 H

iy

S
arb 051221a

10 10°
time [s]
(Gehrels et al. 2009)

Friday, August 13, 2010




...so far all plausibly explained by compact binary merger

GRB X-ray activity

Short GRBs “late-time activity”

LLI#J | grb 050724
3 central engine

still active!?

o.\

grb 051210 +i

iy

Can a compact binary merger
still produce activity as long
as ~ 10* s after merger???

S
arb 051221a

i0° 10°
time [s]
(Gehrels et al. 2009)
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merger remnant possesses apart ligelny
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merger remnant possesses apart ligelny

1 (5 x 10%gem 3
D

27 (MBH>
Tdyn,bh — ~ 1 ms

a) dynamical time scale 7anns =4/ 55~ 0-1ms

WK,ISCO 3Mq
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merger remnant possesses apart ligelny

1

5 x 10*gem—3

] I n.ns — —_— = 0.1
a) dynamical time scale 7am o7~ 01 ms ( :

2T 1 <}A459}{:>
Tdyn,bh = ~ 1 1ms
WK, ISCO 3Mg

b) viscous accretion time scale

1
Tvise ~ —— =~ 0.05s (

QW 200 km
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merger remnant possesses apart ligelny

1

5 x 10*gem—3

] I n.ns — —_— = 0.1
a) dynamical time scale 7am o7 ~ 01 ms ( :

2T 1 <}A459}{:>
Tdyn,bh = ~ 1 1ms
WK, ISCO 3Mg

b) viscous accretion time scale

1
GREEaR s A (

QW 200 km
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merger remnant possesses apart ligelny

. . _ 1 0.1 ms (5 x 10*gem 3
n,ns — ~—~ulm —
a) dynamical time scale e, Gp 5

2T 1 ( MBH )
Tdyn,bh = ~ 11ms
WK, ISCO 3Mg

b) viscous accretion time scale
Tvisc ™ L ~ 0.05s (

QW 200 km

“unbound”

“bound”
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if one assumes...

a) “fallback matter” is ballistic at end of simulation

b) dissipates its energy at Rais &~ 10GM,/c”

c) GR-effects have no substantial influence on time scale

the fallback time can be calculated analytically:

VD

VAT + Br+C B , (2A’I"+B)]T2
—_— + arcsin

Iy v, =
v l A 24v/—A
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if one assumes...

a) “fallback matter” is ballistic at end of simulation

b) dissipates its energy at Rais &~ 10GM,/c”

c) GR-effects have no substantial influence on time scale

the fallback time can be calculated analytically:

for o;-7; >0
for ¥;-m <0

2Av/-A

4 —— 4 NSBH
4 —— & NSBH

2
log,,(t [sD

1 min

(Rosswog 2007)
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if one assumes...

a) “fallback matter” is ballistic at end of simulation

b) dissipates its energy at Rais &~ 10GM,/c”

c) GR-effects have no substantial influence on time scale

the fallback time can be calculated analytically:

- =
11a~<.‘i1Rdi:s fOI' Vi Ti > 0
for 7;-7: <0

B . (
- —+— arcsin
A Ny
24v-4 A — — & NSBH
4 — — A NSBH

can easily produce fallback
for minutes to hours! T og (5]

1 min

(Rosswog 2007)
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Previous merger calculations  (taken from Rosswog et al. 2006)

log o [g/cm’]
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Previous merger calculations  (taken from Rosswog et al. 2006)

(1 MeV= 10'° K)
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Previous merger calculations  (taken from Rosswog et al. 2006)

Lv ~ 2 x 10°3 erg/s

(1 MeV= 10'° K)
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Previous merger calculations  (taken from Rosswog et al. 2006)

“baryon-free”: can ultra-relativistic
outflow be launched here???

~ 4 MeV ~20 MeV Lv ~ 2 x 10°3 erg/s

(1 MeV= 10'° K)
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Previous merger calculations  (taken from Rosswog et al. 2006)

“baryon-free”: ca | | |
outflow be neutrino-driven winds are

likely to be important !!

~ 4 MeV ~20 MeV

(1 MeV= 10'° K)
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Our approach

e explore: outflow formation vs. neutrino-driven wind
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Our approach

e explore: outflow formation vs. neutrino-driven wind

e step |:simulate early phases with 3D MAGMA code

(Rosswog&Price 2007)
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Our approach

e explore: outflow formation vs. neutrino-driven wind

* 3D Smooth Particle Hydrodynamics

= i | * Magnetic field evolution via Euler potentials
Step |:simulate early g nuclear equation of state (Shen et al. 1998)

MAGMA| ° opacity dependent cooling via neutrinos

* no heating by neutrinos
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Our approach

e explore: outflow formation vs. neutrino-driven wind

* 3D Smooth Particle Hydrodynamics

= i | * Magnetic field evolution via Euler potentials
Step |:simulate early g nuclear equation of state (Shen et al. 1998)

MAGMA| ° opacity dependent cooling via neutrinos

* no heating by neutrinos

* step 2: map results on 2D grid
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Our approach

e explore: outflow formation vs. neutrino-driven wind

* 3D Smooth Particle Hydrodynamics

i | * Magnetic field evolution via Euler potentials
® step l:simulate early pue e equation of state (Shen et al. [998)

MAGMA| ° opacity dependent cooling via neutrinos

* no heating by neutrinos

* step 2: map results on 2D grid

e step 3: follow long-term evolution with supernova
neutrino-hydrodynamics code VULCAN 2D

(Burrows et al. 2007)
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Our approach

e explore: outflow formation vs. neutrino-driven wind

* 3D Smooth Particle Hydrodynamics

s | * Magnetic field evolution via Euler potentials
® step l:simulate early pue e equation of state (Shen et al. [998)

MAGMA| ° opacity dependent cooling via neutrinos

* no heating by neutrinos

® step 2: map =101 ixels ® 2D “ALE” (Adaptive Lagrangian Eulerian)
* nuclear equation of state (Shen et al. 1998)
VULCAN 2D | ® state-of-the-art neutrino physics (emission,

scattering, absorption)

® step 3: follow Iong-t * during evolution:“Multi-group Flux Limited

neutrino-hydrc UL
* post-processing: “‘Multi-angle” or S,-method

* heating via neutrino absorption & annihilation
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Step |:  typical coalescence:2 x 1.4 M_ , no stellar spins

MAGMA simulation includes:

* 3D magnetohydrodynamics

* nuclear equation of state

* opacity-dependent neutrino
cooling

* self-gravity + gravitational

‘wave emission
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® Step 3:dynamical evolution including neutrino heating
and annihilation (vULCAN 2D)
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® Step 3:dynamical evolution including neutrino heating
and annihilation (vuLcaN 2D)
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® Step 3:dynamical evolution including neutrino heating
and annihilation (vuLCAN 2D)

mass loss:

= driven by: Ve T+ — €+D

Poamm o = e g
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® Step 3:dynamical evolution including neutrino heating
and annihilation (vuLCAN 2D)

mass loss:

= driven by: Ve T+ — €+D
L e i ik o B

strong baryonic pollution in the important location,
no relativistic outflow possible as long as the
central neutron star is alive!
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® Step 3:dynamical evolution including neutrino heating
and annihilation (vuLCAN 2D)

mass loss:

= driven by: Ve t 0 — €+p
L e i ik o B

strong baryonic pollution in the important location,
no relativistic outflow possible as long as the
central neutron star is alive!

What happens after collapse to bh?
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Conclusions

* the field has seen tremendous progress in the last decade
e prime example of multi-scale, multi-physics problem

* astrophysics:
* mass loss: (again) interesting amounts,
event rates estimates keep increasing
e GRB:

- ¢ still best central engine model
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Conclusions

* the field has seen tremendous progress in the last decade
e prime example of multi-scale, multi-physics problem

* astrophysics:
* mass loss: (again) interesting amounts,
event rates estimates keep increasing

e GRB:
o still best central engine model

&
-0 Y,
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JO045-7319
81259-63
J1740-3052

J1141-6545
82303+ 46

JO737-3039A
J0737-30398
11518+ 4904
81534412
18111736
8182011
J1829 4+ 2456
B1913+16
82127+ 11C

B1257+12
81620-26

JO621+ 1002
BOESS +64

1157-5112
J1904 +0412

J0034-0534
0218 +4232
J0437-4715
JO751+ 1807
BOB20 402

J1012+5307
11640 + 2224
N713+0747
J1732-5049
B1855+09

11509-3744
81957+ 20

J2019 +2425

B80021-72H
B80021-72)
J0514-4002A
B1516+028
81639+ 368
81718-19
J1740-5340
B1744-24A
81802-07
J2140-2310A

Classes of binary radio pulsars

Spin Orbital
period period
(s) (days)

Orbital
eccentricity

Pulsar
mass (M)

Companion
mcs‘:‘(M ) Remarks
Young pulsars with B- or Be-star companions
0.808 10:: 1.58
0870 >313
0579 >1.0
Young pulsars in eccentric orbits with massive white dwarf companions
0.394 0,158 0172 05863550 130° *
1.066 123 0658 1.3:2% 134509
Double-neutron-star binanes

0.926
00478

0.570

512
12367
2310

0.

0.0227
2.77

0.0408
00379

0.102
0.102
863

0427

0.088 13374958
0.088 Qo4 1250 256
0.249 04y 1.56°213
133322020

Double pulsar
Double pulsar

References

(10, 18)
(107)
(13)

(94)
(14, 49)

(17)
(17)

0.104
0.280
0.0470
0.05%0
0.0305

0.00622
001N

188
3578
1.18
0323
0335

66.5
1914

0.274 ‘ et

0.828
0.795
0.13%
0617
0681

0.0183
00253

o-r

138732

136755

162°3%
May have MS companion
114754
M3 14408 in
13525% M 15

Pulsars with planets

034554

Three planets
M & WD + 1 planet

Representative “intermediate-mass” systems: mildly recycled pulsars with massive white dwavf companions

0.0289
0.196

004356
007N

000188
0.00232
0.00576
0.00348
0865

0.00526
0.00316
0.00457
0.00531
0.00536
0.00295
0.00161
0.00393

0.00321
0.00210
0.04%9
0.00795
0.00353
1.004
0.00365
00116
0.0231
0.01M

832

103

351
149

0.0025
<0.00003

0.00040

0.0002

097°5%
>066
>1.18
>0.22

1.70°8%

Representative “low-mass” systems: millisecond pulsars with low-mass white dwarf companions

159
203
574
0263
12325
0505
1755
678
526
123
153
0382
765

238
0327
188

686
126
0258
1354
00756
262
0174

0.000019
«<0.,000003
0.012
<0.0000013
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from Stairs, Science
304, 547 (2004)
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Sample schematic evolutionary tracks (Stairs Science 304,547 (2004))
neutron star - white dwarf double neutron star

C

Qo000 00

“X-ray binary”
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“Full GR”
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neutrino physics

phys. EOS
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black hole + neutron star, black hole + disk + tidal tail

episodic mass transter

final disruption, disk formation

- e TN (YR D (R e Y
0 25 50 75 100 125150 175200 225
t [ms]

(Rosswog 2007)
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Neutron star black hole systems

—— Case A
---- Case D
Case E

M, Fraction OQutside AH

<
)
©
w
-
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-
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3
@
—
e
o
-

.

400 600 BOO 1000
( t t25) /M ( L t215) M

FIG. 13: Rest-mass fraction outside the BH for different ini- FIG. 14: Rest-mass fraction outside the BH for different
tial BH spins (Cases C, A, and B). Here, the time coordinate BHNS mass ratios. Here, the time coordinate is shifted by
is shifted by t;5, the time at which 25% of the NS rest mass t25, the time at which 25% of the NS rest mass has fallen into
has fallen into the apparent horizon. the apparent horizon.

(Etienne et al. 2009)
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“How different is a strange star merger
from a neutron star merger?”

Friday, August 13, 2010



|. Introduction

Friday, August 13, 2010



® Step 3:

® Step 2: map on 2D

(t= 16.3 ms)

long-term evolution with neutrino

Neutrino Gain and Loss (10zo erg s gf')

hydrodynamics code s m e U S
1
VULCAN i
neutrino loss and gain at t= 60 ms:— Q:’
maximum gain along = [‘m
the polar axis! ..a
-1.0
MGFLD: Multi-group flux-limited diffusion
Sh: short-characteristic method —1?1'5 10 -05 00 05 1.0 15
x [100 km]
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|. Introduction

Sample schematic evolutionary tracks
(from Fryer et al. 1999)
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|. Introduction

Sample schematic evolutionary tracks
(from Fryer et al. 1999)

double neutron stars

Scenario I: DNS Formation

Initial Conditions:
@ Mpu® Mp> M,
Mpg”Ms> B
@ Orbital Separation <1 AU

Primary Evolves off Main Sequence
Primary Expands

Roche Lobe
- Overflow

g \lass Transfer

Primary Collapses

Secondary Evolves

Red Glant O Mala Sequence

K X-ruy Bisary Phase

Common Envelope Phase
Orbital Separation Shrinks

He Merger X111
4
He Core Merges \
With NS

S o —
! \

Envelope Supernova
Ejected

DNS Binary Merges
GRB Se. 1
.\S.

Fio. 2.—Scenano I: “Standard™ double neutron star formation sce-
nario. All symbols are as described in Fig 1. MS denotes a main-sequence
star and NS and BH are ncutron stars and black boles, respectively, Note
that if the ncutron star merges with its helium companion in the common
envelope phase, a He-merger GRB is produced. This scenario assumes that
the accretion onto the neutron star during this phase is limited to the
photon Eddington rate.
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|. Introduction

Sample schematic evolutionary tracks

double neutron stars

Scenario I: DNS Formation
Initial Conditions:

@ Mpa>M2> M,
Mpg”Ms> M

Orbital Separation <1 AU

\‘ Primary Evolves off Main Sequence
Primary Expands

Roche Lobe
- Overflow

@ g \ass Transfer

Primary Collapses

Secondary Evolves
Red Ghant O Mala Sequence

K Xoruy Bisary Phase
Common Envelope Phase
Orbital Separation Shrinks

He Core Merges
i S
_—_— With N

@) ° S . —

—

fr \
Envelope Supernova
Ejected
® NS
-) DNS Binary Merges

- GRBSc. 1
.\S.

He Merger X111

W |

Fro. 2.—Scenano I: “Standard™ double neutron star formation sce-
nario. All symbols are as described in Fig 1. MS denotes a main-sequence
star and NS and BH are ncutron stars and black boles, respectively, Note

that if the neutron star merges with its helium companion in the common
envelope phase, a He-merger GRB is produced. This scenario assumes that
the accretion onto the neutron star during this phase is limited to the
photon Eddington rate.
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(from Fryer et al. 1999)

neutron star black hole system

Scenario IV: BH/NS Formation
Initial Conditions:
M> Mgy

(\GD My > Ms> May
!

Orbital Separation <1 AU

Primary Evolves off Main Sequence
Primary Expands
Roche Lobe
- Overflow

—#  Mass Transfer
Primary Collapses
Collapse to BH (Possible SN)

Sccondary Evolves
OfF Maia Sequence

X-ray Binary Phase

Common Envelope Phase

Orbital Separation Shrinks
He Merger X111

| |
He Core Merges

P With BH

o
—

Envelope . ,
Ejected Supernova

o Bl
O BH/NS Binary Merger

S - GRB Sc. IV

NS

F1o. 5.—Scenario 1V: “Standard™ BH/NS binary formation phase.
This scenario is identical to scenario I (Fig. 2), except that the primary
mass (M) is greater than the critical mass for black hole formation.




* magnetic dipole model

= dipole magnetic field

= emission of magnetic dipole radiation
= at expense of rotational energy
m==> neutron star slows down
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* magnetic dipole model
= dipole magnetic field
= emission of magnetic dipole radiation
= at expense of rotational energy
m==> neutron star slows down

e P& P + “dipole model”
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* magnetic dipole model
= dipole magnetic field
= emission of magnetic dipole radiation
= at expense of rotational energy

m==> neutron star slows down

e P& P + “dipole model” b

==D0> i) B-field ii) “dipole age” 7 = o
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* magnetic dipole model
= dipole magnetic field

= emission of magnetic dipole radiation

= at expense of rotational energy
m==> neutron star slows down

e P& P + “dipole model”
==D0> i) B-field ii) “dipole age” 7 =

e ‘P-Pdot-diagram”
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e magnetic dipole model B
= dipole magnetic field /ﬂ_/\‘ |
= emission of magnetic dipole radiation 4

= at expense of rotational energy
m==> neutron star slows down

Lmd — T o q

. B2
: Pox —
e P& P +“dipole model” P

P ....from Lorimer & Kramer 2005
N A% e {
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==D> i) B-field ii) “dipole age” 7 = 2 T N

e ‘P-Pdot-diagram”
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* magnetic dipole model Qe

= dipole magnetic field ‘ 4
= emission of magnetic dipole radiation 1
= at expense of rotational energy Lo = _lg\ﬁzﬁ
m==> neutron star slows down 72 5
, P x —
e P& P +“dipole model” >

==D> ) B-field ii) “dipole age” 7 = ;

e ‘P-Pdot-diagram”

“normal pulsars”
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* magnetic dipole model ) ¢
. . N
= dipole magnetic field V4
= emission of magnetic dipole radiation 4
: 2 .
= at expense of rotational energy L= —@\mﬁ
m==> neutron star slows down B ¢
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e P& P +“dipole model” P
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* magnetic dipole model
= dipole magnetic field
= emission of magnetic dipole radiation
= at expense of rotational energy
m==> neutron star slows down

e P& P + “dipole model”
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* magnetic dipole model O
; . N
= dipole magnetic field 4
= emission of magnetic dipole radiation 4
: 2 .
Ll 2
at expense of rotational energy Lo, = —@\mﬁ
m==> neutron star slows down B2
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e P& P +“dipole model”
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“recycled” pulsars
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