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Expected galactic merger rates DNS:
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i) from observed systems 
ii) from population synthesis:

≈ 1.2× 10−4 yr−1 (Kim 2007)

similar

BUT: uncertainties are large

for i):  dependence of inspiral time on eccentricity
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rate could be larger by factor of a few (Chaurasia & Bailes 2005)

for ii) sensitive to poorly known parameters 
(common envelope efficiency, initial separations etc) 
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NSBH merger rate:

Bethe & Brown (1998):  “ten times  DNS rate”

Belcynsky et al. (2007):   “0.01 times  DNS rate”

not accurately known
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I.2 Relevance Compact Binary Mergers 

• We know 10 such DNS systems to date

• Orbital motion of binary pulsar PSR 1913+16 showed first proof for 
existence of gravitational waves

• Measurement of (at least two) relativistic effects allows determination of 
individual neutron star masses

• Tests of strong-field gravity:  GR vs. alternative theories

• Prime candidate for ground-based gravitational wave detection (LIGO, 
GEO600,...)

• Nucleosynthesis:
1. dynamical ejecta (cold decompression)
2. neutrino-driven winds (accretion disks, central object remnant)

• Prime candidate for central engine of (short) Gamma-ray bursts
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1.3 What are the challenges?

a) physics

• (strong) gravity

ζ =
GM

cR

∼ 0.5 bh
∼ 0.3 ns
∼ 10−6 Sun
{

important for

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

• strong interaction/nuclear physics - supra-nuclear EOS
- nuclei inner disk regions
- ...

• weak interactions/neutrinos - ν-cooling 
- electron fraction
- ν-driven winds
- nucleosynthesis
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• magnetic fields - additional pressure
- stability central object against collapse
- transport of angular momentum

• hydrodynamics - fluid instabilities/turbulence
- transport of angular momentum
- ...
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• space-time evolution: 
   stable and accurate solution of
   Einstein equations

• GR initial conditions - “garbage in, garbage out”

• very broad range for equation of state 

• ν-transport in 3D

• resolve relevant (magneto-) 
   hydrodynamic length scales

- transport angular momentum
- collapse time scale
- GRB mechanism ...

• Courant-Friedrichs-Lewi 
   stability criterion ∆t <
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• How to ensure numerical 
  conservation of physically 
  conserved quantities ?

- binary dynamics is VERY sensitive to
  angular momentum distribution
- small amounts of mass can pick up
  large amounts of angular momentum !

• “numerical vacuum” - several Eulerian calculations have
  “vacuum” densities >> WD densities

compact binary mergers are prime examples
 of multi-scale and multi-physics problem !!!
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II. Current approaches

• Newtonian gravity
(e.g. Ruffert et al. 1997, Rosswog  et al. 2003, Lee et al.  2005 ...) 

- efficient, well-tested methods available
- accurate numerical evolution
- ideal to test influence of non-gravitational physics

Pros

Cons
- strong-field gravity obviously has non-negligible effects

• Post-Newtonian
(Ayal et al. 2001, Faber et al. 2000)

not appropriate for compact binary mergers

“Gravity”
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Tµν = (e + P )UµUν + Pgµν

approach:

i) evolve hydrodynamics on given space-time,
   conservation laws

energy −momentum : Tµν
;ν = 0

baryon number : (ρUµ);µ = 0

for an ideal fluid:

energy density in comoving frame pressure 4-velocity Uµ =
dxµ

dτ

metric tensor

• Conformal Flatness Approximation (CFA) 
(Isenberg 1978, Wilson & Mathews 1995,  Oechslin et al. 2002, Faber et al. 2006,...)
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ii) update space-time

“3+1” foliation of space-time:

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γijdxidxj

“lapse” “shift”

approximate spatial part of metric by: 
γij = Ψ4δij

“Kronecker delta”“conformal  factor”

Einstein equations reduce to a set of  5 
coupled, non-linear elliptical partial 
differential equations with non-
compact source terms
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- more efficient than “full GR”
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Pros

- exact for spherically symmetric systems
- at least 1PN accurate
- more efficient than “full GR”

Cons

- implicitly assumes “no gravitational waves in space-time”
- but needed for inspiral, added “by hand”
- difficult to judge how good in a general geometry
- (much slower than Newtonian: hard to get resolution
    for other physics)
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- foliate space-time into spacelike hypersurfaces 
  with constant coordinate time

• “Full GR” (e.g. Shibata 2000, Duez 2009, Rezzolla et al. 2010...)

γij Kij

- Einstein equations split up in constraint equations  
  (momentum & Hamiltonian constr.) and evolution equations 
  (for spatial metric      and extrins. curvature of hypersurfaces        )

- usually “free evolution schemes”: constraint 
  equations solved for initial conditions, during 
  evolution their violation is monitored

- two formulations of GR used:
  i)  Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
   ii) generalized harmonic (GH) formulation (Garfinkle 2002, Pretorius 2005, ...)
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Pros

- “first principles” approach

Cons

- new numerical methods involved
- very expensive: resolution restrictions
- poor controle over numerical conservation
- so far only very simple “micro-physics”, polytropic EOS 
  often “hard-wired” in codes
- numerical “vacuum” often above white dwarf central 
  densities
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“Further physics”

Equation of state (EOS):

- polytrope (...)

- piece-wise polytropic EOS (Shibata et al. (2006), Read et al. (2009))

- ρ, T, Ye- dependent EOSs of Lattimer-Swesty & Shen et al.
  (e.g. Ruffert et al. (1997), Rosswog et al. (1999), Rosswog et al. (2003), Oechslin et al. (2007), 
     Duez et al. (2010)...)

- quark matter EOS (Oechslin et al. (2004), Bauswein 2010)

- strange star mergers (Bauswein 2010)
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- “leakage schemes”(Ruffert et al. 1997, Rosswog & Liebendoerfer 2003):
   a) cooling based on ρ, T, Ye and opacities
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   important: neutrinos “leaked out” at some location 
                   of the fluid are NOT absorbed in other parts
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- “leakage schemes”(Ruffert et al. 1997, Rosswog & Liebendoerfer 2003):
   a) cooling based on ρ, T, Ye and opacities
   b) evolution of  Ye

   important: neutrinos “leaked out” at some location 
                   of the fluid are NOT absorbed in other parts

- Multi-group flux-limited Diffusion (MGFLD):
  non-local absorption accounted for
  (Dessart, Ott, Burrows, Rosswog, Livne (2009))

-              - annihilation as a post-processing step
   (e.g. Ruffert & Janka 2001, Rosswog & Ramirez-Ruiz 2002, Rosswog et al. 2003)
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magnetic fields

- full merger simulations using Euler potentials
 

  with Lagrangian hydrodynamics

�B = ∇α×∇β

(Price & Rosswog (2006), Rosswog & Price (2007))

- in grid-based simulations 
   (Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al. (2009))

each approach has its benefits and shortcomings

“patchwork picture”

tremendous progress in the last decade
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• Morphology Double Neutron Star (DNS) merger
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• Morphology Double Neutron Star (DNS) merger

(Price & Rosswog, Science 312, 719, 2006)
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III.  The emerging patchwork picture

• Morphology Double Neutron Star (DNS) merger

modeled physics:
• self-gravity (Newt.)
• gravitational waves
• gas dynamics
• nuclear EOS (RMF; Shen 
  et al. 1998)
• weak interactions/ 
   neutrino cooling (leakage)
• magnetic field evolution
   (Euler potentials) (Price & Rosswog, Science 312, 719, 2006)
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III.1 “Collapse to a black hole”

• observed masses in double     
   neutron star systems (DNS)

• upper mass limit cold, non-rotating, isolated   
   neutron star

1.677 M⊙ < Mmax,TOV < 3.2 M⊙

(Freire et al. in prep.) (Roads & Ruffini 1974)

q ≡ m1

m2

0.958
0.993
0.940
0.843
0.993
0.685
0.673
0.84
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(from Rosswog 2007)
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(from Rosswog 2007)

“Collapse to a black hole ???”

Yes, likely, but...

(in many cases) production of  differentially rotating, 
“hyper-massive neutron star”
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• binary mass                      :MDNS > Mth direct collapse to BH

MDNS < Mth
collapse via “hyper-
massive neutron star”

Mth ≈ 1.35 Mmax,TOV ≥ 2.26M⊙ (Shibata & Taniguchi 2006)

probably both types realized in nature
(can a stable neutron star remnant be safely 
ruled out?)
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III.2 Mass loss
Double Neutron Stars

• different types:
• “direct mass loss”

a) from interaction region:  “hot” (~ 10 MeV)

b) from tidal tail:  “cold” (~0.5 MeV)

•  neutrino-driven wind (see later)
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• amounts:
(“CFA + Shen-EOS”,  Oechslin et al. 2007)
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Mej ≈ 2× 10−3 ... 5× 10−2 M⊙• amounts:
(“CFA + Shen-EOS”,  Oechslin et al. 2007)

• tendencies:

• “hot component” both in sym. (q=1) and asym. binaries
• “cold component” only for q ≠1
• ejecta mass increases with binary asymmetry

2× 1.4M⊙ 1.07 & 1.93M⊙
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Neutron star black hole systems

• Newtonian, low-mass BHs (                        )MBH ≤ 10M⊙
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• Newtonian, low-mass BHs (                        )MBH ≤ 10M⊙
- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998):  long, episodic mass transfer

neutron star transferring mass into BH final disruption at ~ 220 ms

MBH = 3 M⊙, Mns = 1.4 M⊙, q = 0.466example: 
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Neutron star black hole systems

• Newtonian, low-mass BHs (                        )MBH ≤ 10M⊙
- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998):  long, episodic mass transfer

neutron star transferring mass into BH final disruption at ~ 220 ms

47 orbital 
revolutions  
until final 
disruption !!

MBH = 3 M⊙, Mns = 1.4 M⊙, q = 0.466example: 

Friday, August 13, 2010



• Pseudo-relativistic, high-mass BHs (                        )MBH > 10 M⊙
(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, 
  ns disruption near ISCO                                         

Rtid ∼
�

MBH

Mns

�1/3

≈ RISCO =
6GMBH

c2

- ejecta masses from 0.01 to 0.2 M⊙
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- difficulty to produce accretion disks for GRBs, 
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Rtid ∼
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Mns

�1/3

≈ RISCO =
6GMBH

c2

- ejecta masses from 0.01 to 0.2 M⊙

(courtesy: M. Duez)
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• Pseudo-relativistic, high-mass BHs (                        )MBH > 10 M⊙
(Rosswog 2005, Faber et al. 2006)

• Recent GR NSBH-simulations
(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)

- now stable numerical evolution
- no quantitative agreement yet
- tendencies: 
  - less sensitive to EOS
  - low-mass BHs: disks hotter & 
                          more massive 
  - larger BH spin: more massive disks

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, 
  ns disruption near ISCO                                         

Rtid ∼
�

MBH

Mns

�1/3

≈ RISCO =
6GMBH

c2

- ejecta masses from 0.01 to 0.2 M⊙

(courtesy: M. Duez)
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III.3 “Central engines of  short GRBs?”

• short bursts are really different:

  a) duration ~ 0.3 s vs ~30 s

b) spectra (“harder”)

c) host galaxies: all types, 
    including ellipticals
 
d) burst often offset from
    candidate host

e) redshift distribution

f) NO supernova connection

measured  T90

corr. to source frame 
duration T90/(1+z)
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...so far all plausibly explained by compact binary merger
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(Gehrels et al. 2009)
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central engine 
still active?

...so far all plausibly explained by compact binary merger
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(Gehrels et al. 2009)

GRB X-ray activity

“late-time activity”

central engine 
still active?

...so far all plausibly explained by compact binary merger

Can a compact binary merger  
still produce activity as long 
as ~ 104 s after merger???
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τdyn,ns =
�

1
Gρ̄

≈ 0.1 ms
�

5× 1014gcm−3

ρ̄

�1/2

τdyn,bh =
2π

ωK,ISCO
≈ 1 ms

�
MBH

3M⊙

�
a) dynamical time scale

merger remnant possesses apart from
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if one assumes...

a) “fallback matter” is ballistic at end of simulation

b) dissipates its energy at Rdis ≈ 10GMc/c2

c) GR-effects have no substantial influence on time scale

the fallback time can be calculated analytically:

can easily produce fallback 
for minutes to hours!

(Rosswog 2007)
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“Baryonic Pollution Problem”

Γasym ≈
E

mc2

• sphere with (thermal) energy E and baryonic mass m
  expands to an asymptotic Lorentz factor

• to reach a Lorentz factor          it cannot be 
   “loaded” with  more mass than

Γasym

mcrit = 2× 10−6M⊙
E/1051erg
Γasym/300

How does Nature separate mass from energy???

• observed radiation is produced in 

ultra-relativistic outflows (Γ ~ 300), i.e. v ~ 0.99998 c
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Friday, August 13, 2010



Previous merger calculations (taken from Rosswog et al. 2006)

Friday, August 13, 2010
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(1 MeV= 1010 K)
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“baryon-free”: can ultra-relativistic 
outflow be launched here???
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Previous merger calculations (taken from Rosswog et al. 2006)

Lν ~ 2 x 1053 erg/sν-Luminosities:

“baryon-free”: can ultra-relativistic 
outflow be launched here???

~20 MeV~ 4 MeVtemperatures:

(1 MeV= 1010 K)

neutrino-driven winds are 
likely to be important !!
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Our approach

• explore:  outflow formation vs.  neutrino-driven wind

• step 2: map results on 2D grid

• step 1: simulate early phases with 3D MAGMA code
(Rosswog&Price 2007)

• step 3:  follow long-term evolution with supernova 
              neutrino-hydrodynamics code VULCAN 2D

(Burrows et al. 2007)

• 3D Smooth Particle Hydrodynamics
• Magnetic field evolution via Euler potentials
• nuclear equation of state (Shen et al. 1998)
• opacity dependent cooling via neutrinos
• no heating by neutrinosMAGMA

• 2D “ALE” (Adaptive Lagrangian Eulerian)
• nuclear equation of state (Shen et al. 1998)
• state-of-the-art neutrino physics (emission, 
  scattering, absorption)

• during evolution: “Multi-group Flux Limited
  diffusion”
• post-processing: “Multi-angle” or Sn-method

• heating via neutrino absorption & annihilation

VULCAN 2D
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Step I:• typical coalescence: 2 x 1.4 M   , no stellar spins

(Price & Rosswog, Sience 2006)

⊙

MAGMA simulation includes:
• 3D magnetohydrodynamics
• nuclear equation of state
• opacity-dependent neutrino
   cooling
• self-gravity + gravitational 
  wave emission

Step II: average results onto a 2D grid
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• Step 3: dynamical evolution including neutrino heating 
and annihilation (VULCAN 2D)
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• Step 3: dynamical evolution including neutrino heating 
and annihilation (VULCAN 2D)

 

mass loss:

➡ driven by:

 
➡ rate:

νe + n → e + p

ν̄e + p → e+ + n

dM

dt
∼ 10−3 M⊙

s
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• Step 3: dynamical evolution including neutrino heating 
and annihilation (VULCAN 2D)

strong baryonic pollution in the important location,
no relativistic outflow possible as long as the 
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• Step 3: dynamical evolution including neutrino heating 
and annihilation (VULCAN 2D)

strong baryonic pollution in the important location,
no relativistic outflow possible as long as the 
central neutron star is alive!

 

mass loss:

➡ driven by:

 
➡ rate:

νe + n → e + p

ν̄e + p → e+ + n

dM

dt
∼ 10−3 M⊙

s

What happens after collapse to bh?
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Conclusions

• the field has seen tremendous progress in the last decade
• prime example of multi-scale, multi-physics problem

• astrophysics:
• mass loss: (again) interesting amounts, 
                  event rates estimates keep increasing
• GRB:   

• still best central engine model
• but faces (serious?) challenges (e.g. late-time activity,
   baryonic pollution)

• don’t rule out alternative/additional possibilities
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Conclusions

• the field has seen tremendous progress in the last decade
• prime example of multi-scale, multi-physics problem

• astrophysics:
• mass loss: (again) interesting amounts, 
                  event rates estimates keep increasing
• GRB:   

• still best central engine model
• but faces (serious?) challenges (e.g. late-time activity,
   baryonic pollution)

• don’t rule out alternative/additional possibilities

Stay tuned for this exciting field
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Classes of binary radio pulsars

from Stairs, Science 
304, 547 (2004)
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(from Lattimer & Prakash 2007)

mp= 1.40
mc= 1.18
q=   0.84

J 1756-2251
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(Stairs, Science 304, 547 (2004))

double neutron starneutron star - white dwarf
Sample schematic evolutionary tracks

“X-ray binary”
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Gravity

“micro-physics”
Newtonian

1 PN

Conformal  
Flatness

“Full GR”

polytropic EOS param. phys. EOS

phys. EOS

neutrino physics

magnetic fields
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(Rosswog 2007)
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Neutron star black hole systems

effect of BH spin effect of mass ratio

(Etienne et al. 2009)
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“How different is a strange star merger 
from a neutron star merger?”
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I. Introduction

Crab nebula

estimated galactic numbers of  (Lorimer 2008)

i) active normal pulsars: ~ 160 000
ii) millisecond pulsars:    ~  40 000

Chandra
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• Step 2:   map on 2D

                 (t= 16.3 ms) 

• Step 3:   long-term evolution with neutrino

             hydrodynamics code 

              VULCAN

neutrino loss and gain at t= 60 ms: 

MGFLD: Multi-group flux-limited diffusion

Sn:          short-characteristic method

maximum gain along 
the polar axis!
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Sample schematic evolutionary tracks
(from Fryer et al. 1999)

I. Introduction
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Sample schematic evolutionary tracks
(from Fryer et al. 1999)

double neutron stars

I. Introduction
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Sample schematic evolutionary tracks
(from Fryer et al. 1999)

double neutron stars neutron star black hole system

I. Introduction
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• magnetic dipole model
➡ dipole magnetic field
➡ emission of magnetic dipole radiation
➡ at expense of rotational energy
          neutron star slows down

Lmd = − 2
3c3

| �̈m|2

Ṗ ∝ B2

P
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in SN remnants
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from Lorimer & Kramer 2005

• magnetic dipole model
➡ dipole magnetic field
➡ emission of magnetic dipole radiation
➡ at expense of rotational energy
          neutron star slows down

Lmd = − 2
3c3

| �̈m|2

Ṗ ∝ B2

P

•“P-Pdot-diagram”

P & Ṗ•               + “dipole model”

   
i) B-field ii) “dipole age” τ =

P

2Ṗ

“recycled” pulsars
in binary systems

“normal pulsars”

young neutron stars 
in SN remnants

“magnetars”
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