#### Heidelberg, July 20, 2010

## The status of Compact Binary Mergers



(Price & Rosswog (2006))

Stephan Rosswog Jacobs University Bremen

Friday, August 13, 2010

#### I.I Observed systems

#### Double neutron star systems (DNS)

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

#### I.I Observed systems

#### Double neutron star systems (DNS)

0

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")



#### I.I Observed systems

#### Double neutron star systems (DNS)

0

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

#### Neutron star black hole systems (NSBH)

#### I.I Observed systems

#### Double neutron star systems (DNS)

0

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

#### Neutron star black hole systems (NSBH) 0

|0|

#### I.I Observed systems

#### Double neutron star systems (DNS)

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

Neutron star black hole systems (NSBH) 0

#### Expected galactic merger rates DNS:

#### I.I Observed systems

#### Double neutron star systems (DNS)

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

Neutron star black hole systems (NSBH) 0

#### Expected galactic merger rates DNS:

i) from observed systemsii) from population synthesis:

 $\approx 1.2 \times 10^{-4} \text{ yr}^{-1}$  (Kim 2007) similar

 $\mathbf{0}$ 

#### I.I Observed systems

#### Double neutron star systems (DNS)

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

Neutron star black hole systems (NSBH) 0

#### Expected galactic merger rates DNS:

i) from observed systemsii) from population synthesis:

BUT: uncertainties are large

 $\approx 1.2 \times 10^{-4} \text{ yr}^{-1}$  (Kim 2007) similar

 $\mathbf{0}$ 

#### I.I Observed systems

#### Double neutron star systems (DNS)

("certain + likely", Lorimer (2008) "likely= mass function + periastron advance consistent with being a neutron star")

Neutron star black hole systems (NSBH) 0

#### Expected galactic merger rates DNS:

i) from observed systemsii) from population synthesis:

 $pprox 1.2 imes 10^{-4} ext{ yr}^{-1}$  (Kim 2007) similar

 $\mathbf{0}$ 

BUT: uncertainties are large for i): dependence of inspiral time on eccentricity

 $\left| \tau_{\rm GW} \approx 9.8 \times 10^6 \text{ yr } \left( \frac{P_b}{\rm hr} \right)^{8/3} \left( \frac{m_1 + m_2}{M_{\odot}} \right)^{-2/3} \left( \frac{\mu}{M_{\odot}} \right)^{-1} \left( 1 - e^2 \right)^{7/2}$ 

# i.e. highly eccentric system would escape observation, rate could be larger by factor of a few (Chaurasia & Bailes 2005)

# i.e. highly eccentric system would escape observation, rate could be larger by factor of a few (Chaurasia & Bailes 2005)

# for ii) sensitive to poorly known parameters (common envelope efficiency, initial separations etc)

i.e. highly eccentric system would escape observation, rate could be larger by factor of a few (Chaurasia & Bailes 2005)

for ii) sensitive to poorly known parameters (common envelope efficiency, initial separations etc)

#### evolution merger rate estimates (incomplete)

### discovery of double pulsar PSR J0737-3039



#### Letters to Nature

Nature 426, 531-533 (4 December 2003) | doi:10.1038/nature02124; Received 12 August 2003; Accepted 15 October 2003

#### An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system

M. Burgay<sup>1</sup>, N. D'Amico<sup>2</sup>,<sup>3</sup>, A. Possenti<sup>3,4</sup>, R. N. Manchester<sup>5</sup>, A. G. Lyne<sup>6</sup>, B. C. Joshi<sup>6</sup>,<sup>7</sup>, M. A. McLaughlin<sup>6</sup>, M. Kramer<sup>6</sup>, J. M. Sarkissian<sup>5</sup>, F. Camilo<sup>8</sup>, V. Kalogera<sup>9</sup>, C. Kim<sup>9</sup> & D. R. Lorimer<sup>6</sup>

#### NSBH merger rate:

## Bethe & Brown (1998): "ten times DNS rate" Belcynsky et al. (2007): "0.01 times DNS rate" not accurately known





• We know 10 such DNS systems to date



• Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves

• We know 10 such DNS systems to date



• Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves

• Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories
- Prime candidate for ground-based gravitational wave detection (LIGO, GEO600,...)



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories
- Prime candidate for ground-based gravitational wave detection (LIGO, GEO600,...)
- Nucleosynthesis:



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories
- Prime candidate for ground-based gravitational wave detection (LIGO, GEO600,...)
- Nucleosynthesis:
  - I. dynamical ejecta (cold decompression)

• We know 10 such DNS systems to date



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories
- Prime candidate for ground-based gravitational wave detection (LIGO, GEO600,...)

#### • Nucleosynthesis:

- I. dynamical ejecta (cold decompression)
- 2. neutrino-driven winds (accretion disks, central object remnant)

• We know 10 such DNS systems to date



- Orbital motion of binary pulsar PSR 1913+16 showed first proof for existence of gravitational waves
- Measurement of (at least two) relativistic effects allows determination of *individual* neutron star masses
- Tests of strong-field gravity: GR vs. alternative theories
- Prime candidate for ground-based gravitational wave detection (LIGO, GEO600,...)

#### • Nucleosynthesis:

- I. dynamical ejecta (cold decompression)
- 2. neutrino-driven winds (accretion disks, central object remnant)

#### • Prime candidate for central engine of (short) Gamma-ray bursts

Friday, August 13, 2010

### a) physics

#### important for

### a) physics

#### important for

• (strong) gravity

#### a) physics

#### important for

• (strong) gravity  $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$ 

### a) physics

#### important for

# • (strong) gravity $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

#### a) physics

#### important for

• (strong) gravity  $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$ 

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

strong interaction/nuclear physics

### a) physics

#### important for

• (strong) gravity  $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$ 

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

- ...

strong interaction/nuclear physics - supra-nuclear EOS
nuclei inner disk regions

### a) physics

#### important for

• (strong) gravity  $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$ 

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

- ...

strong interaction/nuclear physics - supra-nuclear EOS
nuclei inner disk regions

weak interactions/neutrinos

#### a) physics

#### important for

• (strong) gravity  $\zeta = \frac{GM}{cR} \begin{cases} \sim 0.5 \text{ bh} \\ \sim 0.3 \text{ ns} \\ \sim 10^{-6} \text{ Sun} \end{cases}$ 

- structure of neutron star
- peak in GW inspiral freq.
- collapse to BH

strong interaction/nuclear physics - supra-nuclear EOS
nuclei inner disk regions

#### weak interactions/neutrinos

- v-cooling

- ...

- electron fraction
- v-driven winds
- nucleosynthesis

- additional pressure
- stability central object against collapse
- transport of angular momentum

- additional pressure
- stability central object against collapse
- transport of angular momentum

#### hydrodynamics

- additional pressure

- ...

- stability central object against collapse
- transport of angular momentum

#### hydrodynamics

- fluid instabilities/turbulence
- transport of angular momentum

### b) Numerics
# b) Numerics• GR initial conditions

## b) Numerics• GR initial conditions

- "garbage in, garbage out"

• GR initial conditions

- "garbage in, garbage out"

 space-time evolution: stable and accurate solution of Einstein equations

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

stable and accurate solution of Einstein equations

very broad range for equation of state

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

- very broad range for equation of state
- V-transport in 3D

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

- very broad range for equation of state
- V-transport in 3D
- resolve relevant (magneto-) hydrodynamic length scales

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

- very broad range for equation of state
- V-transport in 3D
- resolve relevant (magneto-) hydrodynamic length scales
- transport angular momentum
- collapse time scale
- GRB mechanism ...

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

stable and accurate solution of Einstein equations

- very broad range for equation of state
- V-transport in 3D
- resolve relevant (magneto-) hydrodynamic length scales

 Courant-Friedrichs-Lewi stability criterion

- transport angular momentum
- collapse time scale
- GRB mechanism ...

• GR initial conditions

- "garbage in, garbage out"

• space-time evolution:

- very broad range for equation of state
- V-transport in 3D
- resolve relevant (magneto-) hydrodynamic length scales
- Courant-Friedrichs-Lewi stability criterion

- transport angular momentum
- collapse time scale
- GRB mechanism ...

$$t < \frac{\Delta x}{c_s} = 10^{-6} \mathbf{s} \left(\frac{\Delta x}{1 \ km}\right) \left(\frac{0.3 \ c}{c_s}\right)$$

- binary dynamics is VERY sensitive to angular momentum distribution
- small amounts of mass can pick up large amounts of angular momentum !

- binary dynamics is VERY sensitive to angular momentum distribution
- small amounts of mass can pick up large amounts of angular momentum !

#### • "numerical vacuum"

- binary dynamics is VERY sensitive to angular momentum distribution
- small amounts of mass can pick up large amounts of angular momentum !

#### • "numerical vacuum"

several Eulerian calculations have
 "vacuum" densities >> WD densities

- binary dynamics is VERY sensitive to angular momentum distribution
- small amounts of mass can pick up large amounts of angular momentum !

• "numerical vacuum"

several Eulerian calculations have
 "vacuum" densities >> WD densities

compact binary mergers are prime examples of multi-scale and multi-physics problem !!!

#### <u>"Gravity"</u>

#### "Gravity"

#### • Newtonian gravity

(e.g. Ruffert et al. 1997, Rosswog et al. 2003, Lee et al. 2005 ...)

#### "Gravity"

#### • Newtonian gravity

(e.g. Ruffert et al. 1997, Rosswog et al. 2003, Lee et al. 2005 ...)

#### <u>Pros</u>

- efficient, well-tested methods available
- accurate numerical evolution
- ideal to test influence of non-gravitational physics

#### "Gravity"

#### • Newtonian gravity

(e.g. Ruffert et al. 1997, Rosswog et al. 2003, Lee et al. 2005 ...)

#### <u>Pros</u>

- efficient, well-tested methods available
- accurate numerical evolution
- ideal to test influence of non-gravitational physics <u>Cons</u>
- strong-field gravity obviously has non-negligible effects

#### "Gravity"

#### • Newtonian gravity

(e.g. Ruffert et al. 1997, Rosswog et al. 2003, Lee et al. 2005 ...)

#### <u>Pros</u>

- efficient, well-tested methods available
- accurate numerical evolution
- ideal to test influence of non-gravitational physics <u>Cons</u>
- strong-field gravity obviously has non-negligible effects

#### • Post-Newtonian

(Ayal et al. 2001, Faber et al. 2000)

#### "Gravity"

#### • Newtonian gravity

(e.g. Ruffert et al. 1997, Rosswog et al. 2003, Lee et al. 2005 ...)

#### Pros

- efficient, well-tested methods available
- accurate numerical evolution
- ideal to test influence of non-gravitational physics <u>Cons</u>
- strong-field gravity obviously has non-negligible effects

#### • Post-Newtonian

(Ayal et al. 2001, Faber et al. 2000)

not appropriate for compact binary mergers

Friday, August 13, 2010

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

#### approach:

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

approach:

## i) evolve hydrodynamics on given space-time, conservation laws

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy – momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy - momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

for an ideal fluid:

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

#### approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy - momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

for an ideal fluid:  $T^{\mu\nu} = (e+P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ 

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

#### approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy – momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

for an ideal fluid:  $T^{\mu\nu} = (e + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ 

energy density in comoving frame

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy – momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

for an ideal fluid:  $T^{\mu\nu} = (e+P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ 

energy density in comoving frame

pressure

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

#### approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy – momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

for an ideal fluid:  $T^{\mu\nu} = (e+P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ energy density in comoving frame pressure 4-velocity  $U^{\mu} = \frac{dx^{\mu}}{d\tau}$ 

(Isenberg 1978, Wilson & Mathews 1995, Oechslin et al. 2002, Faber et al. 2006,...)

#### approach:

i) evolve hydrodynamics on given space-time, conservation laws

baryon number :  $(\rho U^{\mu})_{;\mu} = 0$ energy - momentum :  $T^{\mu\nu}_{;\nu} = 0$ 

metric tensor

 $d\tau$ 

for an ideal fluid: 
$$T^{\mu\nu} = (e+P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$
  
hergy density in comoving frame pressure 4-velocity  $U^{\mu} = \frac{dx^{\mu}}{dt}$ 

en

#### "3+1" foliation of space-time:

 $ds^{2} = (-\alpha^{2} + \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$ 

#### "3+1" foliation of space-time:

$$ds^{2} = (-\alpha^{2} + \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$
"lapse"

#### "3+1" foliation of space-time:

 $ds^{2} = (-\alpha^{2} + \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$ "lapse" "shift"

#### "3+1" foliation of space-time:



approximate spatial part of metric by:

#### "3+1" foliation of space-time:

$$ds^{2} = (-\alpha^{2} + \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$
  
"lapse" "shift"

approximate spatial part of metric by:  $\gamma_{ij} = \Psi^4 \delta_{ij}$
### ii) update space-time

### "3+1" foliation of space-time:

$$ds^{2} = (-\alpha^{2} + \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$
  
"lapse" "shift"

approximate spatial part of metric by:  $\gamma_{ij} = \Psi^4 \delta_{ij}$ "conformal factor"

### ii) update space-time

### "3+1" foliation of space-time:



approximate spatial part of metric by:  $\gamma_{ij} = \Psi^4 \delta_{ij}$ "conformal factor" "Kronecker delta"

### ii) update space-time

### "3+1" foliation of space-time:



approximate spatial part of metric by:  $\gamma_{ij} = \Psi^4 \delta_{ij}$ "conformal factor" "Kronecker delta"



Einstein equations reduce to a set of 5 coupled, non-linear elliptical partial differential equations with noncompact source terms

Friday, August 13, 2010

### Pros

- exact for spherically symmetric systems
- at least IPN accurate
- more efficient than "full GR"

#### <u>Pros</u>

- exact for spherically symmetric systems
- at least IPN accurate
- more efficient than "full GR"

### <u>Cons</u>

- implicitly assumes "no gravitational waves in space-time"
- but needed for inspiral, added "by hand"
- difficult to judge how good in a general geometry
- (much slower than Newtonian: hard to get resolution for other physics)

### - foliate space-time into spacelike hypersurfaces

## - foliate space-time into spacelike hypersurfaces with constant coordinate time

- foliate space-time into spacelike hypersurfaces with constant coordinate time
- Einstein equations split up in constraint equations (momentum & Hamiltonian constr.) and evolution equations (for spatial metric  $\gamma_{ij}$  and extrins. curvature of hypersurfaces  $K_{ij}$ )

- foliate space-time into spacelike hypersurfaces with constant coordinate time
- Einstein equations split up in constraint equations (momentum & Hamiltonian constr.) and evolution equations (for spatial metric  $\gamma_{ij}$  and extrins. curvature of hypersurfaces  $K_{ij}$ )
- usually "free evolution schemes": constraint equations solved for initial conditions, during evolution their violation is monitored

- foliate space-time into spacelike hypersurfaces with constant coordinate time
- Einstein equations split up in constraint equations (momentum & Hamiltonian constr.) and evolution equations (for spatial metric  $\gamma_{ij}$  and extrins. curvature of hypersurfaces  $K_{ij}$ )
- usually "free evolution schemes": constraint equations solved for initial conditions, during evolution their violation is monitored
- two formulations of GR used:
  - i) Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
    ii) generalized harmonic (GH) formulation (Garfinkle 2002, Pretorius 2005, ...)





### - "first principles" approach

#### <u>Pros</u>

- "first principles" approach

### <u>Cons</u>

- new numerical methods involved
- very expensive: resolution restrictions
- poor controle over numerical conservation
- so far only very simple "micro-physics", polytropic EOS often "hard-wired" in codes
- numerical "vacuum" often above white dwarf central densities

### "Further physics"

Equation of state (EOS):

- polytrope (...)
- piece-wise polytropic EOS (Shibata et al. (2006), Read et al. (2009))
- $\rho$ , T, Y<sub>e</sub>- dependent EOSs of Lattimer-Swesty & Shen et al.
  - (e.g. Ruffert et al. (1997), Rosswog et al. (1999), Rosswog et al. (2003), Oechslin et al. (2007), Duez et al. (2010)...)
- quark matter EOS (Oechslin et al. (2004), Bauswein 2010)
- strange star mergers (Bauswein 2010)

- "leakage schemes" (Ruffert et al. 1997, Rosswog & Liebendoerfer 2003):
 a) cooling based on ρ, Τ, Y<sub>e</sub> and opacities
 b) evolution of Y<sub>e</sub>

important: neutrinos "leaked out" at some location of the fluid are NOT absorbed in other parts

- "leakage schemes" (Ruffert et al. 1997, Rosswog & Liebendoerfer 2003):
 a) cooling based on ρ, Τ, Y<sub>e</sub> and opacities
 b) evolution of Y<sub>e</sub>

important: neutrinos "leaked out" at some location of the fluid are NOT absorbed in other parts

-  $\nu_i - \overline{\nu}_i$  - annihilation as a post-processing step (e.g. Ruffert & Janka 2001, Rosswog & Ramirez-Ruiz 2002, Rosswog et al. 2003)

- "leakage schemes" (Ruffert et al. 1997, Rosswog & Liebendoerfer 2003):
 a) cooling based on ρ, Τ, Y<sub>e</sub> and opacities
 b) evolution of Y<sub>e</sub>

important: neutrinos "leaked out" at some location of the fluid are NOT absorbed in other parts

-  $\nu_i - \overline{\nu}_i$  - annihilation as a post-processing step (e.g. Ruffert & Janka 2001, Rosswog & Ramirez-Ruiz 2002, Rosswog et al. 2003)

- Multi-group flux-limited Diffusion (MGFLD): non-local absorption accounted for

(Dessart, Ott, Burrows, Rosswog, Livne (2009))

# - full merger simulations using Euler potentials $\vec{B} = \nabla \alpha \times \nabla \beta$

### with Lagrangian hydrodynamics

(Price & Rosswog (2006), Rosswog & Price (2007))

- full merger simulations using Euler potentials  $\vec{B} = \nabla \alpha \times \nabla \beta$ 

### with Lagrangian hydrodynamics

(Price & Rosswog (2006), Rosswog & Price (2007))

#### - in grid-based simulations

(Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al. (2009))

- full merger simulations using Euler potentials  $\vec{B} = \nabla \alpha \times \nabla \beta$ 

### with Lagrangian hydrodynamics

(Price & Rosswog (2006), Rosswog & Price (2007))

### - in grid-based simulations

(Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al. (2009))



tremendous progress in the last decade

- full merger simulations using Euler potentials  $\vec{B} = \nabla \alpha \times \nabla \beta$ 

### with Lagrangian hydrodynamics

(Price & Rosswog (2006), Rosswog & Price (2007))

### - in grid-based simulations

(Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al. (2009))

tremendous progress in the last decade
 each approach has its benefits and shortcomings

- full merger simulations using Euler potentials  $\vec{B} = \nabla \alpha \times \nabla \beta$ 

### with Lagrangian hydrodynamics

(Price & Rosswog (2006), Rosswog & Price (2007))

### - in grid-based simulations

(Anderson et al. 2008, Liu et al. (2008), Giacomazzo et al. (2009))

tremendous progress in the last decade
 each approach has its benefits and shortcomings
 "patchwork picture"

• Morphology Double Neutron Star (DNS) merger

• Morphology Double Neutron Star (DNS) merger



### • Morphology Double Neutron Star (DNS) merger

t = .02 ms



(Price & Rosswog, Science 312, 719, 2006)

Daniel Price Stephan Rosswog

• Morphology Double Neutron Star (DNS) merger

t = .02 ms

#### modeled physics:

- self-gravity (Newt.)
- gravitational waves
- gas dynamics
- nuclear EOS (RMF; Shen et al. 1998)
- weak interactions/ neutrino cooling (leakage)
- magnetic field evolution (Euler potentials)

(Price & Rosswog, Science 312, 719, 2006)

Daniel Price Stephan Rosswog



### III. I "Collapse to a black hole"

 observed masses in double neutron star systems (DNS)

| MI   | M <sub>2</sub> |            | $q \equiv \frac{m_1}{m_2}$ |
|------|----------------|------------|----------------------------|
| 1.44 | 1.38           | B1913+16   | 0.958                      |
| 1.33 | 1.34           | B1534+12   | 0 993                      |
| 1.33 | 1.25           | J0737-3039 | 0.940                      |
| 1.40 | 1.18           | J1756-2251 |                            |
| 1.36 | 1.35           | B2127+11C  | 0.843                      |
| 1.35 | 1.26           | J1906+0746 | 0.993                      |
| 1.62 | 1.11           | J1811-1736 | 0.685                      |
| 1.56 | 1.05           | J1518+4904 | 0.673                      |
| 1.14 | 1.36           | J1829+2456 | 0.84                       |
|      |                |            |                            |

• upper mass limit cold, non-rotating, isolated neutron star  $1.677~M_{\odot} < M_{
m max,TOV} < 3.2~M_{\odot}$ 

(Freire et al. in prep.)

(Roads & Ruffini 1974)

### Yes, likely, but...

### Yes, likely, but...



### Yes, likely, but...



### Yes, likely, but...



(in many cases) production of differentially rotating, "hyper-massive neutron star"
# • binary mass $M_{\rm DNS} > M_{\rm th}$ :

## • binary mass $M_{\rm DNS} > M_{\rm th}$ : direct collapse to BH

# • binary mass $M_{\rm DNS} > M_{\rm th}$ : direct collapse to BH $M_{\rm DNS} < M_{\rm th}$

# • binary mass $M_{\rm DNS} > M_{\rm th}$ : $M_{\rm DNS} < M_{\rm th}$

direct collapse to BH collapse via "hypermassive neutron star"

• binary mass  $M_{
m DNS} > M_{
m th}$ :  $M_{
m DNS} < M_{
m th}$ 

direct collapse to BH collapse via "hypermassive neutron star"

 $M_{
m th}pprox 1.35~M_{
m max,TOV} \geq 2.26 M_{\odot}$  (see

(Shibata & Taniguchi 2006)

• binary mass  $M_{\rm DNS} > M_{\rm th}$ :  $M_{\rm DNS} < M_{\rm th}$ 

direct collapse to BH collapse via "hypermassive neutron star"

 $M_{
m th}pprox 1.35~M_{
m max,TOV} \geq 2.26 M_{\odot}$  (Shibata & Taniguchi 2006)



probably both types realized in nature (can a stable neutron star remnant be safely ruled out?)

## **Double Neutron Stars**

## • different types:

- different types:
  - "direct mass loss"

- different types:
  - "direct mass loss"
    - a) from interaction region: "hot" (~ 10 MeV)

- different types:
  - "direct mass loss"
    - a) from interaction region: "hot" (~ 10 MeV)
      b) from tidal tail: "cold" (~0.5 MeV)

- different types:
  - "direct mass loss"
    - a) from interaction region: "hot" (~ 10 MeV)b) from tidal tail: "cold" (~0.5 MeV)



(Oechslin et al. 2007, "CFA + Shen-EOS")

## **Double Neutron Stars**

## • different types:

- "direct mass loss"
  - a) from interaction region: "hot" (~ 10 MeV)b) from tidal tail: "cold" (~0.5 MeV)



(Oechslin et al. 2007, "CFA + Shen-EOS")

## **Double Neutron Stars**

## • different types:

- "direct mass loss"
  - a) from interaction region: "hot" (~ 10 MeV)
    b) from tidal tail: "cold" (~0.5 MeV)



(Oechslin et al. 2007, "CFA + Shen-EOS")

## **Double Neutron Stars**

## • different types:

- "direct mass loss"
  - a) from interaction region: "hot" (~ 10 MeV)b) from tidal tail: "cold" (~0.5 MeV)



(Oechslin et al. 2007, "CFA + Shen-EOS")

neutrino-driven wind (see later)

Friday, August 13, 2010

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$ 

• amounts:

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$  $2 \times 1.4 M_{\odot}$ 

amounts: ightarrow

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$  $2 \times 1.4 M_{\odot}$   $1.07 \& 1.93 M_{\odot}$ 

("CFA + Shen-EOS", Oechslin et al. 2007)

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$  $2 \times 1.4 M_{\odot}$  1.07 & 1.93  $M_{\odot}$ 

• tendencies:

("CFA + Shen-EOS", Oechslin et al. 2007)

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$   $2 \times 1.4 M_{\odot} \qquad 1.07 \& 1.93 M_{\odot}$ 

• tendencies:

• "hot component" both in sym. (q=1) and asym. binaries

("CFA + Shen-EOS", Oechslin et al. 2007)

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$ 2 × 1.4M<sub>☉</sub> 1.07 & 1.93M<sub>☉</sub>

• tendencies:

"hot component" both in sym. (q=1) and asym. binaries
"cold component" only for q ≠1

("CFA + Shen-EOS", Oechslin et al. 2007)

 $M_{\rm ej} \approx 2 \times 10^{-3} \dots 5 \times 10^{-2} M_{\odot}$  $2 \times 1.4 M_{\odot}$   $1.07 \& 1.93 M_{\odot}$ 

• tendencies:

"hot component" both in sym. (q=1) and asym. binaries
"cold component" only for q ≠ I
ejecta mass increases with binary asymmetry

# Neutron star black hole systems • Newtonian, low-mass BHs ( $M_{\rm BH} \le 10 M_{\odot}$ )

# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer

# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 M_{\odot}, M_{\rm ns} = 1.4 M_{\odot}, q = 0.466$

# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 M_{\odot}, M_{\rm ns} = 1.4 M_{\odot}, q = 0.466$



# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 M_{\odot}, M_{\rm ns} = 1.4 M_{\odot}, q = 0.466$

#### neutron star transferring mass into BH



# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 \ M_{\odot}, M_{\rm ns} = 1.4 \ M_{\odot}, \ q = 0.466$

#### neutron star transferring mass into BH



# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 M_{\odot}, M_{\rm ns} = 1.4 M_{\odot}, q = 0.466$

neutron star transferring mass into BH

final disruption at ~ 220 ms



# • <u>Newtonian, low-mass BHs</u> ( $M_{\rm BH} \le 10 M_{\odot}$ )

- very sensitive to equation of state (EOS)
- for stiff EOS (e.g. Shen et al. 1998): long, episodic mass transfer example:  $M_{\rm BH} = 3 M_{\odot}, M_{\rm ns} = 1.4 M_{\odot}, q = 0.466$

neutron star transferring mass into BH

final disruption at ~ 220 ms



47 orbital revolutions until final disruption !!

Friday, August 13, 2010

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, ns disruption near ISCO

$$R_{\rm tid} \sim \left(\frac{M_B H}{M_n s}\right)^{1/3} \approx R_{\rm ISCO} = \frac{6GM_{BH}}{c^2}$$

- ejecta masses from 0.01 to 0.2  $\,M_{\odot}$ 

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, ns disruption near ISCO

$$R_{\rm tid} \sim \left(\frac{M_B H}{M_n s}\right)^{1/3} \approx R_{\rm ISCO} = \frac{6GM_{BH}}{c^2}$$

- ejecta masses from 0.01 to 0.2  $\,M_{\odot}$ 

# <u>Recent GR NSBH-simulations</u>

(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, ns disruption near ISCO

$$R_{\rm tid} \sim \left(\frac{M_B H}{M_n s}\right)^{1/3} \approx R_{\rm ISCO} = \frac{6GM_{BH}}{c^2}$$

- ejecta masses from 0.01 to 0.2  $\,M_\odot$ 

• <u>Recent GR NSBH-simulations</u>

(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)



Evolution of a BHNS system with a BH spin initially inclined at  $80^{\circ}$  with respect to the orbital angular momentum.

(Rosswog 2005, Faber et al. 2006)

- no sign for episodic mass transfer
- difficulty to produce accretion disks for GRBs, ns disruption near ISCO

$$R_{\rm tid} \sim \left(\frac{M_B H}{M_n s}\right)^{1/3} \approx R_{\rm ISCO} = \frac{6GM_{BH}}{c^2}$$

- ejecta masses from 0.01 to 0.2  $\,M_\odot$ 

• <u>Recent GR NSBH-simulations</u>

(Shibata et al. 2006, Etienne et al. 2009, Duez et al. 2010)

- now stable numerical evolution
- no quantitative agreement yet
- tendencies:
  - less sensitive to EOS
  - low-mass BHs: disks hotter &

more massive

- larger BH spin: more massive disks



Evolution of a BHNS system with a BH spin initially inclined at 80° with respect to the orbital angular momentum

III.3 "Central engines of short GRBs?"

- short bursts are *really* different:
  - a) duration ~ 0.3 s vs ~ 30 s corr. to source frame duration  $T_{90}/(1+z)$
  - b) spectra ("harder")

c) host galaxies: all types, including ellipticals

d) burst often offset from candidate host

e) redshift distribution

f) NO supernova connection

Friday, August 13, 2010






# GRB X-ray activity

## Short GRBs



# GRB X-ray activity

### Short GRBs



"late-time activity"

# GRB X-ray activity

### Short GRBs





## central engine still active?

# GRB X-ray activity

### Short GRBs



"late-time activity"

central engine still active?

Can a compact binary merger still produce activity as long as  $\sim 10^4$  s after merger???

a) dynamical time scale

$$\tau_{\rm dyn,ns} = \sqrt{\frac{1}{G\bar{\rho}}} \approx 0.1 \,\,\mathrm{ms} \,\left(\frac{5 \times 10^{14} \,\mathrm{gcm}^{-3}}{\bar{\rho}}\right)^{1/2}$$
$$\tau_{\rm dyn,bh} = \frac{2\pi}{\omega_{K,ISCO}} \approx 1 \,\,\mathrm{ms} \,\left(\frac{M_{BH}}{3M_{\odot}}\right)$$

a) dynamical time scale

$$\tau_{\rm dyn,ns} = \sqrt{\frac{1}{G\bar{\rho}}} \approx 0.1 \,\,\mathrm{ms} \,\left(\frac{5 \times 10^{14} \mathrm{g cm}^{-3}}{\bar{\rho}}\right)^{1/2}$$
$$\tau_{\rm dyn,bh} = \frac{2\pi}{\omega_{K,ISCO}} \approx 1 \,\,\mathrm{ms} \,\left(\frac{M_{BH}}{3M_{\odot}}\right)$$

b) viscous accretion time scale

$$\tau_{\rm visc} \sim \frac{1}{\alpha \omega_K} \approx 0.05 s \left(\frac{R}{200 \text{ km}}\right)^{3/2} \left(\frac{0.1}{\alpha}\right) \left(\frac{2.5 M_{\odot}}{M_{\rm CO}}\right)$$

a) dynamical time scale

$$\tau_{\rm dyn,ns} = \sqrt{\frac{1}{G\bar{\rho}}} \approx 0.1 \,\,\mathrm{ms} \,\left(\frac{5 \times 10^{14} \mathrm{g cm}^{-3}}{\bar{\rho}}\right)^{1/2}$$
$$\tau_{\rm dyn,bh} = \frac{2\pi}{\omega_{K,ISCO}} \approx 1 \,\,\mathrm{ms} \,\left(\frac{M_{BH}}{3M_{\odot}}\right)$$

b) viscous accretion time scale  

$$\tau_{\rm visc} \sim \frac{1}{\alpha \omega_K} \approx 0.05s \left(\frac{R}{200 \text{ km}}\right)^{3/2} \left(\frac{0.1}{\alpha}\right) \left(\frac{2.5M_{\odot}}{M_{\rm CO}}\right)$$

also the much longer

c) "fallback time scale" (Rosswog 2007)

a) dynamical time scale

$$\tau_{\rm dyn,ns} = \sqrt{\frac{1}{G\bar{\rho}}} \approx 0.1 \,\,\mathrm{ms} \,\left(\frac{5 \times 10^{14} \mathrm{g cm}^{-3}}{\bar{\rho}}\right)^{1/2}$$
$$\tau_{\rm dyn,bh} = \frac{2\pi}{\omega_{K,ISCO}} \approx 1 \,\,\mathrm{ms} \,\left(\frac{M_{BH}}{3M_{\odot}}\right)$$

## b) viscous accretion time scale

$$\tau_{\rm visc} \sim \frac{1}{\alpha \omega_K} \approx 0.05s \left(\frac{R}{200 \text{ km}}\right)^{3/2} \left(\frac{0.1}{\alpha}\right) \left(\frac{2.5M_{\odot}}{M_{\rm CO}}\right)$$

also the much longer

c) "fallback time scale" (Rosswog 2007)



#### a) "fallback matter" is ballistic at end of simulation

a) "fallback matter" is ballistic at end of simulation

b) dissipates its energy at  $~R_{
m dis}pprox 10 G M_{
m c}/c^2$ 

a) "fallback matter" is ballistic at end of simulation

(b) dissipates its energy at  $~~R_{
m dis}pprox 10 G M_{
m c}/c^2$ 

c) GR-effects have no substantial influence on time scale

a) "fallback matter" is ballistic at end of simulation

(b) dissipates its energy at  $~~R_{
m dis}pprox 10 G M_{
m c}/c^{21}$ 

c) GR-effects have no substantial influence on time scale

the fallback time can be calculated analytically:

a) "fallback matter" is ballistic at end of simulation

- b) dissipates its energy at  $~~R_{
  m dis}pprox 10 G M_{
  m c}/c^{21}$
- c) GR-effects have no substantial influence on time scale

## the fallback time can be calculated analytically:

$$\tau_{i} = \begin{cases} I_{r_{i},r_{\max,i}} + I_{r_{\max,i},R_{\mathrm{dis}}} & \text{for} \quad \vec{v}_{i} \cdot \vec{r}_{i} > 0\\ I_{r_{i},R_{\mathrm{dis}}} & \text{for} \quad \vec{v}_{i} \cdot \vec{r}_{i} < 0 \end{cases}$$
$$I_{r_{1},r_{2}} = \left[\frac{\sqrt{Ar^{2} + Br + C}}{A} + \frac{B}{2A\sqrt{-A}} \operatorname{arcsin}\left(\frac{2Ar + B}{\sqrt{-D}}\right)\right]_{r_{1}}^{r_{2}}$$

a) "fallback matter" is ballistic at end of simulation

- b) dissipates its energy at  $~~R_{
  m dis}pprox 10 G M_{
  m c}/c^{21}$
- c) GR-effects have no substantial influence on time scale

## the fallback time can be calculated analytically:

$$\tau_i = \left\{ \begin{array}{ll} I_{r_i, r_{\max,i}} + I_{r_{\max,i}, R_{\text{dis}}} & \text{for} \quad \vec{v}_i \cdot \vec{r}_i > 0\\ I_{r_i, R_{\text{dis}}} & \text{for} \quad \vec{v}_i \cdot \vec{r}_i < 0 \end{array} \right.$$
$$I_{r_1, r_2} = \left[ \frac{\sqrt{Ar^2 + Br + C}}{A} + \frac{B}{2A\sqrt{-A}} \arcsin\left(\frac{2Ar + B}{\sqrt{-D}}\right) \right]_{r_1}^{r_2}$$



(Rosswog 2007)

a) "fallback matter" is ballistic at end of simulation

- b) dissipates its energy at  $~~R_{
  m dis}pprox 10 G M_{
  m c}/c^{20}$
- c) GR-effects have no substantial influence on time scale

### the fallback time can be calculated analytically:

$$\tau_i = \begin{cases} I_{r_i, r_{\max,i}} + I_{r_{\max,i}, R_{\text{dis}}} & \text{for} \quad \vec{v}_i \cdot \vec{r}_i > 0\\ I_{r_i, R_{\text{dis}}} & \text{for} \quad \vec{v}_i \cdot \vec{r}_i < 0 \end{cases}$$
$$I_{r_1, r_2} = \left[\frac{\sqrt{Ar^2 + Br + C}}{A} + \frac{B}{2A\sqrt{-A}} \arcsin\left(\frac{2Ar + B}{\sqrt{-D}}\right)\right]_{r_1}^{r_2}$$

can easily produce fallback for minutes to hours!



(Rosswog 2007)

• observed radiation is produced in

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

• observed radiation is produced in

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

 sphere with (thermal) energy E and baryonic mass m expands to an asymptotic Lorentz factor

• observed radiation is produced in

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

 sphere with (thermal) energy E and baryonic mass m expands to an asymptotic Lorentz factor



• observed radiation is produced in

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

• sphere with (thermal) energy E and baryonic mass m expands to an asymptotic Lorentz factor





• to reach a Lorentz factor  $\Gamma_{asym}$  it cannot be "loaded" with more mass than

observed radiation is produced in 

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

• sphere with (thermal) energy E and baryonic mass m expands to an asymptotic Lorentz factor



• to reach a Lorentz factor  $\Gamma_{asym}$  it cannot be "loaded" with more mass than

 $m_{\rm crit} = 2 \times 10^{-6} {\rm M}_{\odot} \frac{E/10^{51} {\rm erg}}{\Gamma_{\rm sym}/300}$ 

• observed radiation is produced in

ultra-relativistic outflows ( $\Gamma \sim 300$ ), i.e.  $v \sim 0.99998 c$ 

• sphere with (thermal) energy E and baryonic mass m expands to an asymptotic Lorentz factor



 $\Gamma_{\rm asym} \approx \frac{E}{mc^2}$ 

• to reach a Lorentz factor  $\Gamma_{asym}$  it cannot be "loaded" with more mass than

 $m_{\rm crit} = 2 \times 10^{-6} {\rm M}_{\odot} \; \frac{E/10^{51} {\rm erg}}{\Gamma_{\rm asym}/300}$ 

How does Nature separate mass from energy???



#### (taken from Rosswog et al. 2006)





#### (taken from Rosswog et al. 2006)



#### temperatures: ~ 4 MeV ~20 MeV



#### (taken from Rosswog et al. 2006)



#### temperatures: ~4 MeV ~20 MeV

#### V-Luminosities: $L_v \sim 2 \times 10^{53}$ erg/s







#### (taken from Rosswog et al. 2006)



# • explore: outflow formation vs. neutrino-driven wind

• explore: outflow formation vs. neutrino-driven wind

• step I: simulate early phases with <u>3D\_MAGMA code</u>

(Rosswog&Price 2007)

# • explore: outflow formation vs. neutrino-driven wind

## • step 1: simulate early



- 3D Smooth Particle Hydrodynamics
- Magnetic field evolution via Euler potentials
- nuclear equation of state (Shen et al. 1998)
- opacity dependent cooling via neutrinos
- no heating by neutrinos
## Our approach

## • explore: outflow formation vs. neutrino-driven wind

### • step 1: simulate early

- 3D Smooth Particle Hydrodynamics
- Magnetic field evolution via Euler potentials
- nuclear equation of state (Shen et al. 1998)
- opacity dependent cooling via neutrinos
- no heating by neutrinos

• step 2: map results on 2D grid

MAGMA

## Our approach

## • explore: outflow formation vs. neutrino-driven wind

### • step 1: simulate early

- 3D Smooth Particle Hydrodynamics
- Magnetic field evolution via Euler potentials
- nuclear equation of state (Shen et al. 1998)
- opacity dependent cooling via neutrinos
- no heating by neutrinos

• step 2: map results on 2D grid

MAGMA

 step 3: follow long-term evolution with supernova neutrino-hydrodynamics code VULCAN 2D (Burrows et al. 2007)

## Our approach

## • explore: outflow formation vs. neutrino-driven wind

| • step I: simulate early<br>MAGMA                            | <ul> <li>3D Smooth Particle Hydrodynamics</li> <li>Magnetic field evolution via Euler potentials</li> <li>nuclear equation of state (Shen et al. 1998)</li> <li>opacity dependent cooling via neutrinos</li> <li>no heating by neutrinos</li> </ul> |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • step 2: map results or                                     | <ul> <li>2D "ALE" (Adaptive Lagrangian Eulerian)</li> <li>nuclear equation of state (Shen et al. 1998)</li> </ul>                                                                                                                                   |
| VULCAN 2D                                                    | <ul> <li>state-of-the-art neutrino physics (emission,<br/>scattering, absorption)</li> </ul>                                                                                                                                                        |
| <ul> <li>step 3: follow long-te<br/>neutrino-hydr</li> </ul> | <ul> <li>during evolution: "Multi-group Flux Limited diffusion"</li> </ul>                                                                                                                                                                          |
|                                                              | <ul> <li>post-processing: "Multi-angle" or S<sub>n</sub>-method</li> <li>heating via neutrino absorption &amp; annihilation</li> </ul>                                                                                                              |

## **Step I:** typical coalescence: $2 \times 1.4 M_{\odot}$ , no stellar spins

t = .02 ms

Daniel Price Stephan Rosswog



- 3D magnetohydrodynamics
- nuclear equation of state
- opacity-dependent neutrino cooling
- self-gravity + gravitational wave emission

(Price & Rosswog, Sience 2006)

## Step II: average results onto a 2D grid

# • Step 3: dynamical evolution including neutrino heating and annihilation (VULCAN 2D)

# • Step 3: dynamical evolution including neutrino heating and annihilation (VULCAN 2D)



# • Step 3: dynamical evolution including neutrino heating and annihilation (VULCAN 2D)

mass loss:

$$\Rightarrow \text{ driven by: } \begin{array}{ccc} \nu_e + n & \rightarrow & e + p \\ & \overline{\nu}_e + p & \rightarrow & e^+ + n \end{array}$$





 $\frac{dM}{dt} \sim 10^{-3} \frac{M_{\odot}}{s}$ 

## Step 3: dynamical evolution including neutrino heating and annihilation (VULCAN 2D)

<u>mass loss:</u>

rate:

$$\Rightarrow \text{ driven by: } \begin{array}{ccc} \nu_e + n & \rightarrow & e + p \\ \hline \nu_e + p & \rightarrow & e^+ + n \end{array}$$

 $\frac{dM}{dt} \sim 10^{-3} \frac{M_{\odot}}{s}$ 



strong baryonic pollution in the important location, no relativistic outflow possible as long as the central neutron star is alive!

## Step 3: dynamical evolution including neutrino heating and annihilation (VULCAN 2D)

<u>mass loss:</u>

rate:

$$\Rightarrow \text{ driven by: } \begin{array}{ccc} \nu_e + n & \rightarrow & e + p \\ & \overline{\nu}_e + p & \rightarrow & e^+ + n \end{array}$$



strong baryonic pollution in the important location, no relativistic outflow possible as long as the central neutron star is alive!

What happens after collapse to bh?

 $\frac{dM}{dt} \sim 10^{-3} \frac{M_{\odot}}{s}$ 

## Conclusions

## Conclusions

- the field has seen tremendous progress in the last decade
   prime example of multi-scale multi-physics problem
- prime example of multi-scale, multi-physics problem
- astrophysics:
  - mass loss: (again) interesting amounts,
    - event rates estimates keep increasing

- GRB:
  - still best central engine model
  - but faces (serious?) challenges (e.g. late-time activity, baryonic pollution)
  - don't rule out alternative/additional possibilities

## Conclusions

- the field has seen tremendous progress in the last decade
  prime example of multi-scale, multi-physics problem
- astrophysics:
  - mass loss: (again) interesting amounts,

event rates estimates keep increasing

- GRB:
  - still best central engine model
  - but faces (serious?) challenges (e.g. late-time activity, baryonic pollution)
  - don't rule out alternative/additional possibilities

Stay tuned for this exciting field

## Classes of binary radio pulsars

| Name        | Spin<br>period<br>(s) | Orbital<br>period<br>(days) | Orbital<br>eccentricity | Companion<br>mass (M <sub>0</sub> ) | Pulsar<br>mass (M <sub>0</sub> ) | Remarks               | References |
|-------------|-----------------------|-----------------------------|-------------------------|-------------------------------------|----------------------------------|-----------------------|------------|
|             |                       |                             | Young puls              | ars with B- or Be-star              | companions                       |                       |            |
| J0045-7319  | 0.926                 | 51.2                        | 0.808                   | 10:11                               | 1.58+0.34                        |                       | (10, 18)   |
| B1259-63    | 0.0478                | 1236.7                      | 0.870                   | >3.13                               | 0.04                             |                       | (107)      |
| J1740-3052  | 0.570                 | 231.0                       | 0.579                   | >11.0                               |                                  |                       | (13)       |
|             |                       | Your                        | g pulsars in eccenti    | ric orbits with massive             | white dwarf compan               | ions                  |            |
| J1141-6545  | 0.394                 | 0.198                       | 0.172                   | 0.986+0.020                         | 1.30+0.02                        |                       | (94)       |
| B2303+46    | 1.066                 | 12.3                        | 0.658                   | 1.3+0.10                            | 1.34+0.10                        |                       | (14, 49)   |
|             |                       |                             | Do                      | uble-neutron-star bini              | aries                            |                       |            |
| J0737-3039A | 0.0227                | 0.102                       | 0.088                   | 1.250+0.005                         | 1.337+0.005                      | Double pulsar         | (17)       |
| J0737-30398 | 2.77                  | 0.102                       | 0.088                   | 1.337-0.005                         | 1.250 - 0.005                    | Double pulsar         | (17)       |
| J1518+4904  | 0.0409                | 8.63                        | 0.249                   | 1.05-0.11                           | 1.56 0.45                        |                       | (10, 108)  |
| B1534+12    | 0.0379                | 0.421                       | 0.274                   | 1.3452 -0.0010                      | 1.3332 -0.0010                   |                       | (98)       |
| J1811-1736  | 0.104                 | 18.8                        | 0.828                   | 1.11-0.53                           | 1.62-0.55                        |                       | (109)      |
| B1820-11    | 0.280                 | 357.8                       | 0.795                   | >0.65                               |                                  | May have MS companion | (92)       |
| J1829+2456  | 0.0410                | 1.18                        | 0.139                   | 1.36-0.17                           | 1.14-0.48                        |                       | (110)      |
| B1913+16    | 0.0590                | 0.323                       | 0.617                   | 1.3873_0.0003                       | 1.4408 -0.0003                   |                       | (99)       |
| B2127+11C   | 0.0305                | 0.335                       | 0.681                   | 1.36+0.04                           | 1.35 +0.04                       | M 15                  | (111)      |
|             |                       |                             |                         | Pulsars with planets                |                                  |                       |            |
| B1257+12    | 0.00622               | 66.5                        | 0.0183                  |                                     |                                  | Three planets         | (112)      |
| B1620-26    | 0.0111                | 191.4                       | 0.0253                  | 0.34 -0.04                          |                                  | M 4; WD + 1 planet    | (74, 113)  |
|             | Repres                | entative "interm            | ediate-mass" system     | ns: mildly recycled pu              | lsars with massive wh            | ite dwarf companions  |            |
| J0621+1002  | 0.0289                | 8.32                        | 0.0025                  | 0.97+0.27                           | 1.70+0.32                        |                       | (114)      |
| B0655+64    | 0.196                 | 1.03                        | < 0.00003               | >0.66                               |                                  |                       | (92)       |
| J1157-5112  | 0.0436                | 3.51                        | 0.00040                 | >1.18                               |                                  |                       | (56)       |
| J1904+0412  | 0.0711                | 14.9                        | 0.0002                  | >0.22                               |                                  |                       | (58)       |
|             | R                     | lepresentative "l           | ow-mass" systems:       | millisecond pulsars wi              | ith low-mass white dv            | warf companions       |            |
| J0034-0534  | 0.00188               | 1.59                        |                         | >0.14                               |                                  |                       | (115)      |
| J0218+4232  | 0.00232               | 2.03                        |                         | 0.21-0.04                           | 4 0.10                           |                       | (116, 117) |
| J0437-4715  | 0.00576               | 5.74                        | 0.000019                | 0.236_0.017                         | 1.58-0.18                        |                       | (39)       |
| J0751+1807  | 0.00348               | 0.263                       | < 0.000003              | 0.188-0.012                         | 2.2-0.2                          |                       | (118)      |
| 80820+02    | 0.865                 | 1232.5                      | 0.012                   | >0.19                               | 4.4.4.0.32                       |                       | (92)       |
| J1012+5307  | 0.00526               | 0.605                       | < 0.0000013             | 0.16-0.02                           | 1.64_0.22                        |                       | (46, 119)  |
| J1640+2224  | 0.00316               | 1/5.5                       | 0.00000                 | >0.25                               | 1 (0+0.24                        |                       | (112)      |
| J1/13+0/4/  | 0.00457               | 67.8                        | 0.000075                | 0.33-0.04                           | 1.60 -0.24                       |                       | (40)       |
| J1/32-5049  | 0.00531               | 5.20                        | 0.00001                 | >0.18                               | 1 59+0.10                        |                       | (50)       |
| B1855+09    | 0.00536               | 12.3                        | 0.000022                | 0.267 -0.014                        | 1.58 -0.13                       |                       | (120)      |
| J1909-3744  | 0.00295               | 1.53                        | <0.000006               | >0.20                               |                                  | Falleslar             | (121)      |
| B1957+20    | 0.00161               | 0.382                       | 0.00011                 | >0.02                               | <1.51                            | Ecupsing              | (122)      |
| J2019+2425  | 0.00393               | /0.5                        | 0.00011                 | 20.31                               | < 1.51<br>decidentes             |                       | (*0)       |
|             | 0.000004              | 2.20                        | Sample of               | binary pulsars in glob              | ular clusters                    | 17.7                  | (4.77)     |
| B0021-72H   | 0.00321               | 2.38                        | <0.071                  | 0.180-0.016                         | 1.41-0.08                        | 47 Tuc                | (123)      |
| 10514 40034 | 0.00210               | 10.121                      | 0.00                    | >0.02                               |                                  | 47 Tuc; ecupsing      | (123)      |
| B1516+028   | 0.0499                | 6.96                        | 0.89                    | >0.90                               |                                  | M E                   | 129        |
| 81630+368   | 0.00795               | 1.36                        | 0.14                    | >0.16                               |                                  | M 13                  | (125)      |
| 81718 10    | 1.004                 | 0.250                       |                         | >0.10                               |                                  | MCC 6242 collector    | (120)      |
| 11740-5340  | 0.00365               | 1258                        | <0.0001                 | >0.11                               |                                  | NGC 6397; eclipsing   | 120        |
| B1740-3340  | 0.00305               | 0.0756                      | <0.0001                 | >0.10                               |                                  | Tes El adlastes       | (120)      |
| 81802.07    | 0.0731                | 2.62                        | 0.21                    | >0.03                               | <1.43                            | NCC 6520              | (10, 97)   |
| 12140-2310A | 0.0231                | 0.174                       | < 0.00012               | >0.10                               | 4.1745                           | M 30; eclipsing       | (130)      |

#### from Stairs, Science 304, 547 (2004)

#### ecember 2006

#### $m_p = 1.40$ $m_c = 1.18$ | 1756-2251 0.84 **q**=



## Sample schematic evolutionary tracks (Stairs, Science 304, 547 (2004))

#### neutron star - white dwarf double neutron star





#### Merging NSs: Physics ingredients





(Rosswog 2007)

### Neutron star black hole systems



FIG. 13: Rest-mass fraction outside the BH for different initial BH spins (Cases C, A, and B). Here, the time coordinate is shifted by  $t_{25}$ , the time at which 25% of the NS rest mass has fallen into the apparent horizon.



FIG. 14: Rest-mass fraction outside the BH for different BHNS mass ratios. Here, the time coordinate is shifted by  $t_{25}$ , the time at which 25% of the NS rest mass has fallen into the apparent horizon.

(Etienne et al. 2009)

## "How different is a strange star merger from a neutron star merger?"



## I. Introduction



Crab nebula

Chandra

estimated galactic numbers of (Lorimer 2008) i) active normal pulsars: ~ 160 000 ii) millisecond pulsars: ~ 40 000





-1.5

-1.0

-0.5

0.0

x [100 km]

0.5

1.0

1.5

11.2

15.0

**Step 3:** long-term evolution with neutrino hydrodynamics code Neutrino Gain and Loss  $(10^{20} \text{ erg s}^{-1} \text{ g}^{-1})$ -0.2-4.03.6 1.5 Nospin t = 60 ms**VULCAN** neutrino loss and gain at t= 60 ms: 1.0 0.5 0.0 maximum gain along -0.5the polar axis! -1.0MGFLD: Multi-group flux-limited diffusion MGFLD

> S<sub>n</sub>: short-characteristic method

## I. Introduction Sample schematic evolutionary tracks (from Fryer et al. 1999)

### I. Introduction Sample schematic evolutionary tracks (from Fryer et al. 1999)

#### double neutron stars



FIG. 2.—Scenario I: "Standard" double neutron star formation scenario. All symbols are as described in Fig. 1. MS denotes a main-sequence star and NS and BH are neutron stars and black holes, respectively. Note that if the neutron star merges with its helium companion in the common envelope phase, a He-merger GRB is produced. This scenario assumes that the accretion onto the neutron star during this phase is limited to the photon Eddington rate.

## I. Introduction Sample schematic evolutionary tracks

#### (from Fryer et al. 1999)

#### double neutron stars

envelope phase, a He-merger GRB is produced. This scenario assumes that

the accretion onto the neutron star during this phase is limited to the

#### neutron star black hole system



FIG. 5.—Scenario IV: "Standard" BH/NS binary formation phase. This scenario is identical to scenario I (Fig. 2), except that the primary mass  $(M_p)$  is greater than the critical mass for black hole formation.

photon Eddington rate.

- <u>magnetic dipole model</u>
  - dipole magnetic field
  - emission of magnetic dipole radiation
  - → at expense of rotational energy
    - neutron star slows down



- <u>magnetic dipole model</u>
  - dipole magnetic field
  - emission of magnetic dipole radiation
  - ➡ at expense of rotational energy

•  $P \& \dot{P}$  + "dipole model"



- <u>magnetic dipole model</u>
  - dipole magnetic field
  - emission of magnetic dipole radiation
  - ➡ at expense of rotational energy

•  $P \& \dot{P}$  + "dipole model"  $\longrightarrow$  i) B-field ii) "dipole age"  $\tau = \frac{P}{2\dot{P}}$ 



- <u>magnetic dipole model</u>
  - dipole magnetic field
  - emission of magnetic dipole radiation
  - ➡ at expense of rotational energy

- $P \& \dot{P}$  + "dipole model"  $\longrightarrow$  i) B-field ii) "dipole age"  $\tau = \frac{P}{2\dot{P}}$ 
  - <u>"P-Pdot-diagram"</u>



- magnetic dipole model
  - → dipole magnetic field
  - emission of magnetic dipole radiation
  - at expense of rotational energy

- P & P + "dipole model"  $\blacksquare$  i) B-field ii) ''dipole age'' au=
  - <u>"P-Pdot-diagram"</u>



0.1

Period (s)

10

og[ Period derivative



Period (s)





