Destruction of ²²Na in Novae: -Surprising Results from an Absolute Measurement of ²²Na(p,γ) Resonance Strengths

Anne L. Sallaska

C. Wrede, A. Garcia, D.W. Storm, T.A.D. Brown, K.A. Snover University of Washington

C. Ruiz, D.F. Ottewell, L. Buchmann, D.A. Hutcheon, C. Vockenhuber, J.A. Caggiano TRIUMF

> 11th Symposium on Nuclei in the Cosmos July 22, 2010

Outline

* panorama view

- □ Motivation for direct, absolute measurements
- Experimental strategy
- □ Apparatus, targets, measured parameters
- □ Final results and astrophysical implications

Motivation

- Classical nova: thermonuclear outburst on the surface of a whitedwarf star accreting H-rich material from a binary companion
 - Ideal sites for modeling of explosive nucleosynthesis: most of relevant thermonuclear reaction rates are based on experimental info

http://i.space.com/images/060719_ophiuchi_nova_02.jpg

- Potential *sources* of γ -ray emitters
 - If detected, can provide more detailed info on underlying physical processes
 - ²²Na: $t_{1/2} \sim 2.6$ y ($E_{\gamma} = 1.275$ MeV): *short* $t_{1/2}$: remains *localized* near its progenitor
 - Novae could be the principal sites for ²²Na production

- □ Main destructive mechanism of ²²Na
- □ Reaction is dominated by narrow, isolated resonances at peak nova temps (0.1 < T < 0.4 GK)
 - Currently accepted rate based on two sets of direct measurements (only one was absolute)
- □ We have made direct, absolute measurements of resonance strengths for $E_p < 610$ keV
 - Including $E_p = 198$, 232 keV: never been observed
 - Has been suggested that a 198-keV resonance could dominate the rate¹
 - Specially designed beamline using proton beams incident on implanted, radioactive ²²Na targets
 - Experimental strategy more robust than previous measurements

Strategy and Requirements: ωγ

Experimental strategy: reversed from the typical

- Small diameter target illuminated with a uniform beam
 - Makes use of all ²²Na atoms
- Insensitive to target:
 - Areal non-uniformity
 - Stoichiometry
- Implanted targets allow use of *integrated*, not peak, yields

 $\int Y dE = 2\pi^2 \Box^2 \frac{m+M}{M} N_{\rm Na} \rho_{\rm beam} \omega \gamma$

• Insensitive to ²²Na distribution within the substrate

Requirements:

- Absolute detector efficiency
- Total number of ²²Na atoms
- Beam density

Chamber

- \Box LN₂-cooled cold shroud assembly:
 - Serves to protect beamline by isolating the radioactivity and assures a clean vacuum
- □ Water-cooled target

NIC XI July 22, 2010

Detector Setup

- \Box Two HPGe at \blacksquare 55^L to the beam axis
- □ 26 mm of Pb to shield from radioactive target
- □ Cosmic ray shielding
 - Filter out excess background by rejecting 80% above 5 MeV

²²Na Targets

☐ Implanted at TRIUMF

- 30 keV ion beam
- 1/8" thk OFHC Cu substrate
- Rastered over 5-mm diameter
- 185, 300 μCi (2005)
 - Test targets
 - Extensive ²³Na tests revealed a Cr layer helped to stunt degradation during proton bombardment¹
- 2 300 μCi (2009)
 - Main targets
 - Cr layer

□ Verified target: 5-mm diameter and centered on substrate:

- Scan with a Geiger counter utilizing a 3-mm collimator

NIC XI July 22, 2010

NIC XI July 22, 2010

CENPA Absolute Detector Efficiency

Determined: measurement and simulation

- Absolute measurement at E_{γ} = 1332 keV using calibrated ⁶⁰Co source (1.7%)
- Relative measurements using:
 - ²⁴Na source: E_{γ} =1369, 2754 keV
 - ${}^{27}\text{Al}(p,\gamma)$ reaction branches: E_{p} = 633, 992 keV (γ -rays: 2-11 MeV)
- PENELOPE simulations

Assigned 6% systematic uncertainty

- Includes estimated 3% from possible anisotropy

$\stackrel{\text{\tiny CENPA}}{\longrightarrow} N_T$ and Target Degradation

• 17.1 C

475

3 C

10.5 C 19.2 C

625

₫

470

620

Initial N_T determined from activity measured *in-situ* using η of 1275 keV γ-ray

Not sufficient due to possible target degradation from proton bombardment. Estimated from two methods:

- In-situ activity measurements
- Revisit strong, reference resonance periodically throughout bombardment because $N_T \propto \int Y dE$

Degradation < 12% for all resonances (except $E_p = 232 \text{ keV}$)

NIC XI July 22, 2010

610

460

455

608 keV

465

615

 E_{n} (keV)

150

100

50

400

300

200

100

0.1

Counts,

Beam Density

□ Measured yields from two thick targets: full and "coin" ²⁷A1 □ Extracted using ratio of yields from: $\frac{Y_{coin}}{Y_{full}} = \rho_{beam} A_{coin}$

- Measurements at $E_p = 405$, 992 keV in excellent agreement

□ 9.7% systematic error determined by:

- Physical measurements of beam spot via target coloration
- Varied raster amplitudes/collimator diameters
- Used Monte-Carlo simulation to model transport, applying constraints from

various measurements

- DAQ system also registers raster amplitudes with every event
 - Used to detect possible errors

A. L. Sallaska

²⁷Al: 5-mm Ø

Cu

SCENPA Excitation Functions and Spectra

NIC XI July 22, 2010

Results

Syste	ematic
Error	Budget

	Error	453/608 keV	211/608 keV	287 keV	232 keV
tic	η	6%	6%	6%	6%
lget	$ ho_b$	10%	10%	10%	10%
	N _T	2.6%	+5.6%, -2.6%	+7%, -14%	40%
	Total	11.7%	+12.7%, -11.7%	+13.4%, -18.1%	42%

	E _R (keV)	$\omega \gamma_{\text{previous}} \text{ (meV)}$	$\omega \gamma_{\text{present}}$ (meV)	Ratio present : previous
Results for	198	≤ 4 ★	≤ 0.50	0.1
	211	1.8 ± 0.7 1	$5.5^{+1.6}_{-0.9}$	(3.1)
	232	2.2±1.0*	≤ 0.65	0.3
ωγ	287	$15.8 \pm 3.4_{1}$	38±8	2.4
	453	68 ± 20 2	161 ± 21	2.4
<pre>* indirect determination</pre>	608	235 ± 332	573^{+100}_{-72}	2.4

[1] F. Stegmuller *et al.*, Nucl. Phys., A601, 168 (1996). [2] S. Seuthe *et al.*, Nucl. Phys., A514, 471 (1990).

NIC XI July 22, 2010

CENPA Reaction Rate and Astrophysical Implications

Based on post-processing network calculations^{1,2}, we estimated ²²Na consumption increases by factors of 2 to 3
[1] C. Iliadis *et al.*, Astrophys. J. Suppl. Ser., 142, 105 (2002).
[2] Hix *et al.*, Nucl. Phys., A718, 620c (2003).

NIC XI July 22, 2010

We performed direct, absolute measurements of ²²Na(p,γ) resonance strengths

- Radioactive targets: minimal degradation
- Robust experimental method
 - Insensitive to target distributions within the substrate
 - Only N_T needed to be determined, not target density

□Surprisingly found resonance strengths to be higher by 2.4x to 3.1x!

– Directly affects the consumption of ²²Na in novae

Acknowledgments

University of Washington T.A.D. Brown D.W. Storm A. Garcia C. Wrede K. Snover H. Simons G. Harper D.I. Will D. Zumwalt S. Stattel

B.M. Freeman

TRIUMF
C. Ruiz
D.A. Hutcheon
L. Buchmann
D.F Ottewell
C. Vockenhuber
C. Holmberg
J.A. Caggiano

Publications:

- short paper submitted to Phys. Rev. Lett.
- long paper in preparation for Phys. Rev. C

NIC XI July 22, 2010