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Outline of Presentation

Carbon Fusion Reactions in Stars

• Astrophysical Motivation – Importance of 12C + 12C

• 12C + 12C via particle spectroscopy (CIRCE Caserta/Napoli)

• Background Considerations

• Results
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Motivation – Stellar Evolution
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Astrophysical consequences and implications

stellar model calculation
(private communication Oscar Straniero)

important implications on
progenitor stars of Type II
Supernovae

larger rate
perhaps in better agreement
with recent astronomical
observations, which suggest
a lower mass limit than
presently given by models

computed with the FRANEC code

no carbon ignition
neutrino losses too large

core contraction

larger rate
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• Stars with M < Mup (presently 8Msolar)
These stars shed their H-rich envelopes during He burning (AGB phase) and end as 
CO White Dwarfs.
→ Most of the matter returned to the ISM is unprocessed.
→ Progenitors for Novae and Type Ia Supernovae (in binary systems)

• Stars with Mup < M < M‘up
These stars will ignite off-center carbon burning under degenerated conditions and 
after a super AGB phase end as ONeMg White Dwarf.

• Stars with M > M‘up

Ignition of central carbon burning followed by Ne, O, and Si burning. The 
subsequent evolution proceeds in most cases to a core collapse Supernova.
→ These stars make the bulk of newly processed matter that is returned to the ISM.

Astrophysical Motivation 12C + 12C fusion
Results of current Stellar Models suggest:

Mup ≡ minimum mass for carbon ignition

→ Impact on the Nucleosynthesis and the chemical evolution of 
the Universe

→ the expected observational rates for Supernovae and Novae
depend on the fundamental mass limits Mup and M‘up
and, thus on the 12C+12C reaction rates
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Wide range of possible heavy ion reactions – at low energies most important: 12C 
+ 12C  (lowest Coulomb Barrier)

12C(12C,p)23Na Q = 2.240 MeV
12C(12C,α)20Ne  Q = 4.617 MeV
12C(12C,n)23Mg  Q = -2.598 MeV

EG = 2.42×T9
2/3 ± 0.75×T9

5/6

The 12C+12C fusion reactions produce
light elements; their abundances stay
relatively low and reflect the rate ratio
of the reactions destroying them and
of 12C+12C.

Carbon Burning in Stars

Nucleosynthese in surrounding burning shell
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Level Scheme - γ-ray spectroscopy
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Level Scheme - particle spectroscopy
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Experimental Results – total S-factor

importance of resonances

Advantages of γ-ray spectroscopy approach:
- very easy
- „clear“ signature of γ-lines

Disadvantage:
- low efficiency
- unknown angular distribution
- not sensitive to ground state transitions

→ could make 50% of cross section
→ no measurement of σtot
→ need estimate from old measurement 
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Setup - Accelerator

particle spectroscopy of the 12C + 12C fusion reactions

experiment (similar setup) moved from Bochum to Caserta

better support, more beam time available
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Experimental Setup - particle spectroscopy

preliminar tests wth single detector:
→ beam induced background

too high at lower energies
→ ∆E-E particle detector telescope

Ω=0.19 sr
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Experimental Setup - particle spectroscopy

Completely separate detector volume from target using foils and sheet metal
→ Target sputtering causing large leak currents on silicon detectors
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Experimental Results - particle spectroscopy

first phase:
- only p channel is detected
- 12C(12C,p0,1)23Na
- ∆E detector too thick
- α particles are stopped
- background tests

second phase:
-12C(12C,α0,1)20Ne with
small size ion chamber
telescope or Bragg curve
detector 

- starts late 2010

background arising from
hydrogen contaminations

E =3.5 MeV
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Background Considerations

disadvantage of particle spectroscopy:
very poor energy resolution
from kinematics as well as experimental technique

→ background discrimination not as „easy“ as for γ-ray spectroscopy

→ test with various beams and targets (7Li, 9Be, 10,11B, 13C)
no impact observed so far

but: 
water, i.e. deuterium, remains as a huge problem
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Background Considerations

in γ-ray spectroscopy measurements main source of background

12C(d,pγ)13C or d(12C,pγ)13C 

→ Proton from this contaminat reaction too low in energy

but:

→ Elastic scattering under forward anlges d(12C,d)12C

→ followed by 12C(d,pγ)13C, but then at higher CM energy
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deuterium (water)
contamination

12C beam

graphit target

Background Considerations
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Background Considerations

in γ-ray spectroscopy measurements main source of background

12C(d,pγ)13C or d(12C,pγ)13C 

→ Proton from this contaminat reaction too low in energy

but:

→ Elastic scattering under forward anlges d(12C,d)12C

→ followed by 12C(d,pγ)13C, but then at higher CM energy

→ higher proton energy, in the region of 12C(12C,p)23Na (!!!!)

→ checked with 16O beam (advantage: contamination can be monitored)
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Background Considerations

in γ-ray spectroscopy main source of background   12C(d,pγ)13C or d(12C,pγ)13C 

Improvements:

→ all vacuum components in CF – on vacuum level of 10-7 mbar a build
up of water is likely, at 10-9 mbar sputtering is fast than the build up

→ „radon“ box: experimental setup closed in a box flushed with argon
suppression of hydrogen and nitrogen (water to a lesser extend)

→ HOPG targets: graphite almost free of hydrogen and oxygen

→ cold trap with liquid nitrogen (suppression of water)

Impact on the α-channel: hydrogen suppression is probably a huge problem
due to the gas in Bragg detectors, hydrogen in the rest gas cannot be avoided,
but most likely there is no similar contamination in the α-channel.
However, you never know before you did the experiment at such low-level
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Preliminary New Results (very recent)

Courtesy Jim Zickefoose

Influence of 12C(d,p)13C
resonances

hydrogen “free”
target
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Preliminary New Results (very recent)

Courtesy Jim Zickefoose
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Future measurements →α-channel

Alpha stopped in gas

Proton stopped in silicon

Larger solid angle than current telescope

Bragg chamber upgrade
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Summary of Presentation

The 12C + 12C fusion reactions at astrophysical energies
• 12C + 12C Experiment with γ-ray spectroscopy

- completed in 2007

• 12C + 12C Experiment with particle spectroscopy
- partly (proton channel) on the way, we had to learn a lot …
- α channel to be done next year

• exciting results → discovery of new resonances (?)

• Astrophysical Implications:
- stellar evolution – impact on nucleosynthesis
- supernovae rates ??

• room for improvements with new measurements
- Underground Laboratory
- high intensity accelerator



23

NUCLEAR ASTROPHYSICS

Ruhr-Universität Bochum
Claus Rolfs, Frank Strieder, Hans-Werner Becker,

Universita Federico II, Napoli und Seconda Universita di Napoli
Lucio Gialanella, Filippo Terrasi, Benedetta Limata, Nicola De Cesare, 
Antonio D‘Onofrio, Daniel Schürmann, Antonino Di Leva, Gianluca Imbriani

University of Connecticut, Storrs, USA
Tim Spillane, Jim Zickefoose, Jeff Schweitzer

Osservatorio Astronomico Collurania Teramo
Oscar Straniero, Luciano Piersanti

Horia Hulubei -National Institute of Physics and Nuclear
Engineering, Bucharest, Romania
Cristina Bordeanu

Team and Thanks



24

NUCLEAR ASTROPHYSICS

additional slides
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LUNA

Perspectives for Underground Accelerators
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Gran Sasso

underground halls

Background reduction in LNGS
(shielding ≡ 4000 m w.e.)

Radiation LNGS/surface

Muons

Neutrons

Photons

10-6

10-3

10-1
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Benefit of an Underground Laboratory

in γ-ray spectroscopy
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HPGe on surface

HPGe underground

unshielded measurements



28

NUCLEAR ASTROPHYSICS

0 500 1000 1500 2000 2500 3000 3500 4000

10-3

10-2

10-1

100

101

102

103

104

(b)

 

 
co

un
ts 

/h
/k

eV

Eγ [keV]

Benefit of an Underground Laboratory

in γ-ray spectroscopy

HPGe unshielded

HPGe fully shielded

Measurement at LNGS
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Benefit of an Underground Laboratory

in particle spectroscopy

very often is argued there is no advantage

allows for:   large particle detector telescopes
in very close geometry

advantage: high efficiency

surface

LNGS

Example: 3He+3He experiment at LUNA
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Extraction of S-factor from thick target
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Target sputtering causing large leak currents on silicon detectors

After beam Before beam
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Reichart et al.
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α’s protons

Plot peak ionization Vs total ionization for particle identification

Future measurements →α-channel
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Experimental Results - γ-ray spectroscopy
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Experimental Results - γ-ray spectroscopy
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