Carbon fusion reactions in stars

Frank Strieder Ruhr-Universität Bochum

Symposium on Nuclei in the Cosmos XI Heidelberg, Germany 19.07.2010

Outline of Presentation

Carbon Fusion Reactions in Stars

- Astrophysical Motivation Importance of ¹²C + ¹²C
- ¹²C + ¹²C via particle spectroscopy (CIRCE Caserta/Napoli)
- Background Considerations
- Results

Motivation – Stellar Evolution

Astrophysical consequences and implications RUB

stellar model calculation (private communication Oscar Straniero)

important implications on progenitor stars of Type II Supernovae

larger rate

perhaps in better agreement with recent astronomical observations, which suggest a lower mass limit than presently given by models

Astrophysical Motivation ¹²C + ¹²C fusion

Results of current Stellar Models suggest:

 $M_{up} \equiv$ minimum mass for carbon ignition

- Stars with M < M_{up} (presently 8M_{solar}) These stars shed their H-rich envelopes during He burning (AGB phase) and end as
 - → Impact on the Nucleosynthesis and the chemical evolution of the Universe

→ the expected observational rates for Supernovae and Novae depend on the fundamental mass limits M_{up} and M'_{up} and, thus on the ¹²C+¹²C reaction rates

Stars with M > M'_{up}

Ignition of central <u>carbon burning</u> followed by Ne, O, and Si burning. The subsequent evolution proceeds in most cases to a core collapse Supernova. \rightarrow These stars make the bulk of newly processed matter that is returned to the ISM.

Carbon Burning in Stars

Wide range of possible heavy ion reactions – at low energies most important: ¹²C + ¹²C (lowest Coulomb Barrier)

¹²C(¹²C,p)²³Na Q = 2.240 MeV ¹²C(¹²C, α)²⁰Ne Q = 4.617 MeV ¹²C(¹²C,n)²³Mg Q = -2.598 MeV

$$E_{G} = 2.42 \times T_{9}^{2/3} \pm 0.75 \times T_{9}^{5/6}$$

The ¹²C+¹²C fusion reactions produce light elements; their abundances stay relatively low and reflect the rate ratio of the reactions destroying them and of ¹²C+¹²C.

Nucleosynthese in surrounding burning shell

Level Scheme - γ -ray spectroscopy

Level Scheme - particle spectroscopy

Experimental Results – total S-factor

Setup - Accelerator

Experimental Setup - particle spectroscopy RUB

preliminar tests wth single detector:

- → beam induced background too high at lower energies
- $\rightarrow \Delta E$ -E particle detector telescope

Experimental Setup - particle spectroscopy RUB

Completely separate detector volume from target using foils and sheet metal \rightarrow Target sputtering causing large leak currents on silicon detectors

Experimental Results - particle spectroscopy RUB

disadvantage of particle spectroscopy:

very poor energy resolution from kinematics as well as experimental technique

 \rightarrow background discrimination not as "easy" as for γ -ray spectroscopy

test with various beams and targets (⁷Li, ⁹Be, ^{10,11}B, ¹³C) no impact observed so far

but:

water, i.e. deuterium, remains as a huge problem

in γ -ray spectroscopy measurements main source of background

${}^{12}C(d, \mathbf{p}\gamma){}^{13}C \text{ or } d({}^{12}C, \mathbf{p}\gamma){}^{13}C$

 \rightarrow Proton from this contaminat reaction too low in energy

but:

 \rightarrow Elastic scattering under forward anlges d(¹²C,d)¹²C

 \rightarrow followed by ¹²C(d,**p** γ)¹³C, but then at <u>higher</u> CM energy

¹²C beam

RUB

E = 1.6 MeV

in γ -ray spectroscopy measurements main source of background

 ${}^{12}C(d, \mathbf{p}\gamma){}^{13}C \text{ or } d({}^{12}C, \mathbf{p}\gamma){}^{13}C$

 \rightarrow Proton from this contaminat reaction too low in energy

but:

 \rightarrow Elastic scattering under forward anlges d(¹²C,d)¹²C

 \rightarrow followed by ¹²C(d,p_γ)¹³C, but then at higher CM energy

 \rightarrow higher proton energy, in the region of ${}^{12}C({}^{12}C,p){}^{23}Na$ (!!!!)

 \rightarrow checked with ¹⁶O beam (advantage: contamination can be monitored)

in γ -ray spectroscopy main source of background ${}^{12}C(d,p\gamma){}^{13}C$ or $d({}^{12}C,p\gamma){}^{13}C$

Improvements:

- → all vacuum components in CF on vacuum level of 10⁻⁷ mbar a build up of water is likely, at 10⁻⁹ mbar sputtering is fast than the build up
- → "radon" box: experimental setup closed in a box flushed with argon suppression of hydrogen and nitrogen (water to a lesser extend)
- \rightarrow HOPG targets: graphite almost free of hydrogen and oxygen
- \rightarrow cold trap with liquid nitrogen (suppression of water)

Impact on the α -channel: hydrogen suppression is probably a huge problem due to the gas in Bragg detectors, hydrogen in the rest gas cannot be avoided, but most likely there is no similar contamination in the α -channel. However, you never know before you did the experiment at such low-level

Preliminary New Results (very recent)

Courtesy Jim Zickefoose

Preliminary New Results (very recent)

Courtesy Jim Zickefoose

Future measurements $\rightarrow \alpha$ -channel

Larger solid angle than current telescope

Summary of Presentation

The ¹²C + ¹²C fusion reactions at astrophysical energies

- ¹²C + ¹²C Experiment with γ-ray spectroscopy
 completed in 2007
- ¹²C + ¹²C Experiment with particle spectroscopy
 - partly (proton channel) on the way, we had to learn a lot ...
 - α channel to be done next year
- exciting results \rightarrow discovery of new resonances (?)
- Astrophysical Implications:
 - stellar evolution impact on nucleosynthesis
 - supernovae rates ??
- room for improvements with new measurements
 - Underground Laboratory
 - high intensity accelerator

Team and Thanks

Ruhr-Universität Bochum

Claus Rolfs, Frank Strieder, Hans-Werner Becker,

Universita Federico II, Napoli und Seconda Universita di Napoli Lucio Gialanella, Filippo Terrasi, Benedetta Limata, Nicola De Cesare, Antonio D'Onofrio, Daniel Schürmann, Antonino Di Leva, Gianluca Imbriani

University of Connecticut, Storrs, USA Tim Spillane, <u>Jim Zickefoose</u>, Jeff Schweitzer

Osservatorio Astronomico Collurania Teramo Oscar Straniero, Luciano Piersanti

Horia Hulubei -National Institute of Physics and Nuclear Engineering, Bucharest, Romania Cristina Bordeanu RUHR-UNIVERSITÄT BOCHUM NUCLEAR ASTROPHYSICS

additional slides

Perspectives for Underground Accelerators

В

Background reduction in LNGS (shielding = 4000 m w.e.)

> Radiation Muons Neutrons Photons

10⁻⁶ 10⁻³ 10⁻¹

LNGS/surface

Gran Sasso

underground halls

Benefit of an Underground Laboratory

in γ -ray spectroscopy

В

Benefit of an Underground Laboratory

Benefit of an Underground Laboratory

В

Improvements Underground

1E-3 1000

1500

2000

E, [keV]

2500

3000

3500

counts /h/keV

В

Extraction of S-factor from thick target

Thick target yield $\rightarrow \sigma(E)$ (and $\tilde{S}(E)$)

All energies up to the beam energy are represented in the yield:

$$Y^{\infty}(E_0) \sim \int_0^{E_0} \frac{\sigma(E)}{\epsilon(E)} dE \qquad \qquad \tilde{S}(E) = \sigma(E)E \times \exp\left(2\pi\eta + gE\right)$$

Point-to-point differentiation is one method to extract $\sigma(E)$:

$$Y^{\infty}(E) - Y^{\infty}(E - \Delta) \sim rac{\Delta}{\epsilon(E)} \sigma(E_{ ext{eff}})$$

Advantages:

Disadvantages:

- Allows for thick targets
- Narrow structure resolved

- Small ∆ required
- Differentiation propagates error

After beam

Before beam

Target sputtering causing large leak currents on silicon detectors

Reichart et al.

Future measurements $\rightarrow \alpha$ -channel

Plot peak ionization Vs total ionization for particle identification

Experimental Results - γ-ray spectroscopy

Experimental Results - γ-ray spectroscopy

