The first direct measurement of ${}^{17}O(\alpha,\gamma){}^{21}Ne$ and its impact upon s-process abundances

<u>M. Taggart</u> for the DRAGON collaboration

Introduction

- Astrophysics motivation

 How ¹⁷O(α,γ)²¹Ne relates to the s-process

 The DRAGON facility
- Experimental analysis

ASTROPHYSICAL MOTIVATION

The Astrophysical s-Process

¹⁶O – Neutron Poison or Absorber?

Phys. Rev. C, 48, 2746 (1993)

- Light isotopes (¹⁶O, ^{20,22}Ne, ^{25,26}Mg,) can remove neutrons available to the s-process
- Abundance of ¹⁶O is independent of metallicity – "primary n-poison"
- ¹⁷O has competing reactions:

 (α,n)

(α,γ)

- (α,n) dominates, but by how much?
- If (α, γ) is too strong...
 - recycling by (α, n) is incomplete
- Up to a factor of 10⁴ variation in predictions

Impact of ${}^{17}O(\alpha,\gamma){}^{21}Ne$

- Fast rotating massive stars at low metallicity may produce high s-process abundances between Sr and Ba, due to primary ²²Ne in the He core, with a potential impact on the GCE of the heavy elements (Pignatari et al. 2008, Hirschi et al. 2008)..
- Nucleosynthesis calculations using different rates for ${}^{17}O(\alpha,\gamma){}^{21}Ne$, produce vastly different abundances, due to the large rate existing uncertainty.

THE DRAGON FACILITY

See also: J. Fallis - NIC_XI_325

A. Parikh - NIC_XI_065

ISAC I & II, TRIUMF, Vancouver

DRAGON recoil separator

DRAGON Guided Tour...

EXPERIMENTAL ANALYSIS

Recoil Event Selection

Raw Yield Data

Comparison with NACRE data

- Limited data available at planning stages
- Experiment planned to select energies based on Denker *et al.* ¹⁷O(α,n)²⁰Ne data
- Recent work by Notre Dame group: A.Best, NIC_XI_159
- "Region of unexpectedly high yield" becomes apparent in comparison with the (α, n) data
- $E_{cm} \sim 0.8 \text{ MeV}$
- Repeated during November experimental run

Charge State Distributions

Hunting Resonances

(α, γ) cross sections – courtesy U. Hager

S-factors

Remaining work

- Conversion of raw yields to cross sections
 - Efficiencies
 - CSD
 - Beam intensity
 - Deadtime
 - Angular Distribution
- Extrapolation to required energy range
- Implementation of astrophysical codes with latest cross section data U. Victoria, U. Keele

Collaborators

- <u>University of York</u>
 - A. M. Laird, S. Fox, M. Bentley, B. Fulton, C. Diget, K. Chipps, J. Brown
- <u>TRIUMF</u>
 - C. Ruiz, D. Hutcheon, D. Ottewell, U. Hager, L. Martin,
 J. Fallis, C. Davis, B. Davids, S. Sjue, L. Buchmann, L. Veloce,
 N. Galinski, D. Howell, S. Reeve
- <u>Colorado School of Mines</u>
 - L. Erikson, U. Greife
- <u>University of Edinburgh</u>
 - A. Murphy, D. Mountford
- <u>McMaster University</u>
 - A. Chen
- <u>University of Victoria</u>
 - F. Herwig, M. Pignatari
- <u>University of Keele</u>
 - R. Hirschi

