Clusters in Dense Matter and the Equation of State

Stefan Typel

Excellence Cluster 'Universe', Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

in collaboration with

Gerd Röpke (Universität Rostock) Thomas Klähn (Uniwersytet Wrocławski) David Blaschke (Uniwersytet Wrocławski) Hermann Wolter (LMU München) Maria Voskresenskaya (GSI Darmstadt)

11th Symposium on Nuclei in the Cosmos

The Life and Death of Stars

when the era of nuclear fusion reactions ends:

- last phases in the life of a massive star $(8M_{\rm sun} \lesssim M_{\rm star} \lesssim 30M_{\rm sun})$
 - \Rightarrow core-collapse supernova
 - \Rightarrow neutron star or black hole

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

The Life and Death of Stars

when the era of nuclear fusion reactions ends:

- last phases in the life of a massive star $(8M_{\rm sun} \lesssim M_{\rm star} \lesssim 30M_{\rm sun})$
 - \Rightarrow core-collapse supernova
 - \Rightarrow neutron star or black hole
- essential ingredient in astrophysical model calculations:

equation of state (EoS) of dense matter

- \Rightarrow dynamical evolution of supernova
- \Rightarrow static properties of neutron star
- \Rightarrow conditions for nucleosynthesis
- ⇒ energetics, chemical composition, transport properties, . . .

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Thermodynamical Conditions

- densities: $10^{-9} \lesssim \varrho/\varrho_{\rm sat} \lesssim 10 \ (\varrho_{\rm sat} \approx 2.5 \cdot 10^{14} \ {\rm g/cm^3})$
- temperatures: 0 MeV $\leq k_BT \lesssim 25$ MeV ($\hat{=} 2.9 \cdot 10^{11}$ K)
- electron fraction: $0 \le Y_e \lesssim 0.6$

Thermodynamical Conditions

- densities: $10^{-9} \lesssim \varrho/\varrho_{\rm sat} \lesssim 10 \ (\varrho_{\rm sat} \approx 2.5 \cdot 10^{14} \ {\rm g/cm^3})$
- temperatures: 0 MeV $\leq k_BT \lesssim 25$ MeV ($\doteq 2.9 \cdot 10^{11}$ K)
- electron fraction: $0 \le Y_e \lesssim 0.6$
- \Rightarrow global theoretical description of matter properties is required

Equation of State of Dense Matter

• many EoS developed in the past:

from simple parametizations to sophisticated models

• many investigations of detailed aspects:

often restricted to particular conditions (e.g. zero temperature)

only few EoS used in astrophysical models: most well known
J.M. Lattimer, F.D. Swesty (Nucl. Phys. A 535 (1991) 331)
H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi (Prog. Theor. Phys. 100 (1998) 1013)

Equation of State of Dense Matter

• many EoS developed in the past:

from simple parametizations to sophisticated models

• many investigations of detailed aspects:

often restricted to particular conditions (e.g. zero temperature)

- only few EoS used in astrophysical models: most well known
 J.M. Lattimer, F.D. Swesty (Nucl. Phys. A 535 (1991) 331)
 H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi (Prog. Theor. Phys. 100 (1998) 1013)
- most difficult problem:

description of strongly interacting subsystem (hadronic or quark matter) in this talk: formation of "clusters" in nuclear matter

• in "standard" astrophysical EoS:

only nucleons, α particle and representative heavy nucleus, suppression of cluster formation with phenomenological excluded-volume mechanism

 \Rightarrow consider more microscopic model, more clusters

Composition of Nuclear Matter I

- depends strongly on density, temperature and neutron-proton asymmetry
- affects thermodynamical properties

Composition of Nuclear Matter I

- depends strongly on density, temperature and neutron-proton asymmetry
- affects thermodynamical properties
- theoretical models: different points of view

• chemical picture:

mixture of different nuclear species and nucleons in chemical equilibrium problems:

- properties of constituents independent of medium
- interaction between particles
- dissolution of nuclei at high densities

Composition of Nuclear Matter I

- depends strongly on density, temperature and neutron-proton asymmetry
- affects thermodynamical properties
- theoretical models: different points of view

• chemical picture:

mixture of different nuclear species and nucleons in chemical equilibrium problems:

- properties of constituents independent of medium
- interaction between particles
- dissolution of nuclei at high densities

• physical picture:

correlations of nucleons \Rightarrow formation of bound states problems:

- treatment of three-, four-, . . . many-body correlations difficult
- choice of interaction
- \Rightarrow combination of approaches?

Composition of Nuclear Matter II

• low densities:

mixture of nuclei and nucleons

• models with nuclei in statistical equilibrium

(NSE, virial expansion, Beth-Uhlenbeck, ...)

Composition of Nuclear Matter II

• low densities:

mixture of nuclei and nucleons

 models with nuclei in statistical equilibrium (NSE, virial expansion, Beth-Uhlenbeck, . . .)

• high densities (around/above nuclear saturation):

homogeneous and isotropic neutron-proton matter

• mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . .)

Composition of Nuclear Matter II

• low densities:

mixture of nuclei and nucleons

 models with nuclei in statistical equilibrium (NSE, virial expansion, Beth-Uhlenbeck, . . .)

• high densities (around/above nuclear saturation):

homogeneous and isotropic neutron-proton matter

• mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . .)

• in between at low temperatures:

"liquid-gas" phase transition

- surface effects and long-range Coulomb interaction
- inhomogeneous matter
- formation of "pasta" phases/lattice structures

• low densities:

mixture of nuclei and nucleons

 models with nuclei in statistical equilibrium (NSE, virial expansion, Beth-Uhlenbeck, . . .)

• high densities (around/above nuclear saturation):

homogeneous and isotropic neutron-proton matter

• mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . .)

• in between at low temperatures:

"liquid-gas" phase transition

- surface effects and long-range Coulomb interaction
- inhomogeneous matter
- formation of "pasta" phases/lattice structures

interpolation between low-density and high-density limit needed

 \Rightarrow consider quantum statistical approach and generalized relativistic mean-field model

Quantum Statistical Approach I

- nonrelativistic finite-temperature Green's function formalism
- starting point: nucleon number densities ($\tau = p, n$)

 $n_{\tau}(T, \tilde{\mu}_p, \tilde{\mu}_n) = 2 \int \frac{d^3k}{(2\pi)^3} \int \frac{d\omega}{2\pi} f_{\tau}(\omega) S_{\tau}(\omega)$ with Fermi distribution $f_{\tau}(\omega)$

and spectral function $S_\tau(\omega)$ depending on self-energy Σ_τ

• expansion of spectral function beyond quasiparticle approximation

Quantum Statistical Approach I

- nonrelativistic finite-temperature Green's function formalism
- starting point: nucleon number densities ($\tau = p, n$)

 $n_{\tau}(T, \tilde{\mu}_p, \tilde{\mu}_n) = 2 \int \frac{d^3k}{(2\pi)^3} \int \frac{d\omega}{2\pi} f_{\tau}(\omega) S_{\tau}(\omega)$ with Fermi distribution $f_{\tau}(\omega)$

and spectral function $S_\tau(\omega)$ depending on self-energy Σ_τ

• expansion of spectral function beyond quasiparticle approximation

\Rightarrow generalized Beth-Uhlenbeck descripton with

medium dependent self-energy shifts/binding energies

- \circ generalized scattering phase shifts from in-medium T-matrix
- T, n_p , $n_n \Rightarrow \tilde{\mu}_p$, $\tilde{\mu}_n \Rightarrow$ free energy $F(T, n_p, n_n)$ by integration $\left(\frac{\partial (F/V)}{\partial n_\tau}\Big|_{T, n_{\tau'}} = \tilde{\mu}_{\tau}\right)$ \Rightarrow thermodynamically consistent derivation of EoS

Quantum Statistical Approach II

medium modifications

- single nucleon properties
 - \circ self-energy shift of quasiparticle energy
 - \circ effective mass

Quantum Statistical Approach II

medium modifications

- single nucleon properties
 - \circ self-energy shift of quasiparticle energy
 - \circ effective mass
- cluster properties
 - \circ shift of quasiparticle energy from
 - nucleon self-energies
 - Pauli blocking
 - \Rightarrow medium dependent binding energies

(calculation with effective nucleon-nucleon potential)

Quantum Statistical Approach II

medium modifications

- single nucleon properties
 - self-energy shift of quasiparticle energyeffective mass
- cluster properties
 - \circ shift of quasiparticle energy from
 - nucleon self-energies
 - Pauli blocking
 - \Rightarrow medium dependent binding energies

(calculation with effective nucleon-nucleon potential)

 \Rightarrow quasi-particles

symmetric nuclear matter

parametrization used in generalized RMF model

Generalized Relativistic Mean-Field (RMF) Model

• extended relativistic Lagrangian density of Walecka type

with nucleons (ψ_p, ψ_n) , deuterons (φ_d^{μ}) , tritons (ψ_t) , helions (ψ_h) , α -particles (φ_{α}) , mesons $(\sigma, \omega_{\mu}, \vec{\rho}_{\mu})$, electrons (ψ_e) and photons (A_{μ}) as degrees of freedom

- only minimal (linear) meson-nucleon couplings
- \circ density-dependent meson-nucleon couplings Γ_i

Generalized Relativistic Mean-Field (RMF) Model

• extended relativistic Lagrangian density of Walecka type

with nucleons (ψ_p, ψ_n) , deuterons (φ_d^{μ}) , tritons (ψ_t) , helions (ψ_h) , α -particles (φ_{α}) , mesons $(\sigma, \omega_{\mu}, \vec{\rho}_{\mu})$, electrons (ψ_e) and photons (A_{μ}) as degrees of freedom

- only minimal (linear) meson-nucleon couplings
- \circ density-dependent meson-nucleon couplings Γ_i
- parameters: nucleon/meson masses, coupling strengths/density dependence
 - in total **10 free parameters** (highly correlated)
 - constrained from fit to properties of finite nuclei
- \circ medium-dependent cluster binding energies

Generalized Relativistic Mean-Field (RMF) Model

• extended relativistic Lagrangian density of Walecka type

with nucleons (ψ_p, ψ_n) , deuterons (φ_d^{μ}) , tritons (ψ_t) , helions (ψ_h) , α -particles (φ_{α}) , mesons $(\sigma, \omega_{\mu}, \vec{\rho}_{\mu})$, electrons (ψ_e) and photons (A_{μ}) as degrees of freedom

- only minimal (linear) meson-nucleon couplings
- \circ density-dependent meson-nucleon couplings Γ_i
- parameters: nucleon/meson masses, coupling strengths/density dependence
 - in total 10 free parameters (highly correlated)
 - constrained from fit to properties of finite nuclei
- \circ medium-dependent cluster binding energies
- ⇒ nucleon/cluster/meson/photon field equations, solved selfconsistently in mean-field approximation (classical meson/photon fields, Hartree approximation, no-sea approximation)

EoS with Light Clusters - Generalized RMF Model

- consider 2-, 3-, and 4-body correlations in the medium
 - \circ presently only bound states
 - (deuterons, tritons, helions, and alphas)
 - \circ scattering contributions neglected so far
- Mott effect: clusters dissolve at high densities
- correct limits at low and high densities

EoS with Light Clusters - Generalized RMF Model

- consider 2-, 3-, and 4-body correlations in the medium
 - \circ presently only bound states
 - (deuterons, tritons, helions, and alphas)
 - \circ scattering contributions neglected so far
- Mott effect: clusters dissolve at high densities
- correct limits at low and high densities
- no heavy clusters/phase transition included here
- medium dependence of couplings and binding energies

 \Rightarrow "rearrangement" contributions in self-energies and source densities essential for thermodynamical consistency

EoS with Light Clusters - Cluster Fractions

symmetric nuclear matter generalized RMF model vs. NSE (thin lines)

	2 MeV
—	4 MeV
—	6 MeV
—	8 MeV
—	10 MeV
—	12 MeV
—	14 MeV
—	16 MeV
—	18 MeV
—	20 MeV

EoS with Light Clusters - Pressure/Density

symmetric nuclear matter

 $\lim_{n\to 0} (p/n) = T$ (ideal gas)

Phase Transition - Pressure and Chemical Potential

symmetric nuclear matter (Maxwell construction sufficient)

RMF model without (dashed lines) and with (solid lines) clusters

Heavy Clusters

• liquid-gas phase transition:

separation of low-/high-density phases, no surface or Coulomb effects

Heavy Clusters

- liquid-gas phase transition: separation of low-/high-density phases, no surface or Coulomb effects
- first step in improvement: spherical Wigner-Seitz cell calculation

 generalized RMF model
 Thomas-Fermi approximation
 electrons for charge compensation
 heavy nucleus surrounded by
 - gas of nucleons and light clusters

Heavy Clusters

- liquid-gas phase transition: separation of low-/high-density phases, no surface or Coulomb effects
- first step in improvement: spherical Wigner-Seitz cell calculation

 generalized RMF model
 Thomas-Fermi approximation
 electrons for charge compensation
 heavy nucleus surrounded by gas of nucleons and light clusters
- first self-consistent calculation with interacting nucleons, light clusters and electrons

Symmetry Energy I

• general definition for zero temperature:

$$E_s(n) = \frac{1}{2} \frac{\partial^2}{\partial \beta^2} \frac{E}{A}(n,\beta) \Big|_{\beta=0} \quad \beta = \frac{n_n - n_p}{n_n + n_p}$$

 \Rightarrow nuclear matter parameters

$$J = E_s(n_{\text{sat}}) \quad L = 3n \frac{d}{dn} E_s \big|_{n=n_{\text{sat}}}$$

• correlation: neutron skin thickness \Leftrightarrow slope of neutron matter EoS ($\Leftrightarrow L$)

B. A. Brown, Phys. Rev. Lett. 85 (2000) 5296,

S. Typel, B. A. Brown, Phys. Rev. C 64 (2001) 027302

Symmetry Energy I

• general definition for zero temperature:

$$E_s(n) = \frac{1}{2} \frac{\partial^2}{\partial \beta^2} \frac{E}{A}(n,\beta) \Big|_{\beta=0} \quad \beta = \frac{n_n - n_p}{n_n + n_p}$$

 \Rightarrow nuclear matter parameters

$$J = E_s(n_{\text{sat}}) \quad L = 3n \frac{d}{dn} E_s \big|_{n=n_{\text{sat}}}$$

correlation: neutron skin thickness
 ⇔ slope of neutron matter EoS (⇔ L)
 B. A. Brown, Phys. Rev. Lett. 85 (2000) 5296,

S. Typel, B. A. Brown, Phys. Rev. C 64 (2001) 027302

with clusters and at finite temperatures:
 o use finite differences

$$E_{\rm sym}(n) = \frac{1}{2} \left[\frac{E}{A}(n,1) - 2\frac{E}{A}(n,0) + \frac{E}{A}(n,-1) \right]$$

effects of cluster formation? experimental observation?

Symmetry Energy II

temperature T = 0 MeV

• mean-field models without clusters

e.g. model with momentum-dependent interaction (MDI), parameter x controls density dependence of $E_{\rm sym}$ (B. A. Li et al., Phys. Rep. 464 (2008) 113)

 \Rightarrow low-density behaviour not correct

Symmetry Energy II

temperature T = 0 MeV

mean-field models without clusters

e.g. model with momentum-dependent interaction (MDI), parameter x controls density dependence of $E_{\rm sym}$ (B. A. Li et al., Phys. Rep. 464 (2008) 113)

- \Rightarrow low-density behaviour not correct
- RMF model with (heavy) clusters
 - \Rightarrow increase of $E_{\rm sym}$ at low densities due to formation of clusters
 - \Rightarrow finite symmetry energy in the limit $n \rightarrow 0$

finite temperature

- experimental determination of symmetry energy
 - heavy-ion collisions of ⁶⁴Zn on ⁹²Mo and ¹⁹⁷Au at 35 A MeV temperature, density, free symmetry energy derived as functions of parameter v_{surf} (measures time when particles leave the source) (S. Kowalski et al., Phys. Rev. C 75 (2007) 014601)

finite temperature

• experimental determination of symmetry energy

 heavy-ion collisions of ⁶⁴Zn on ⁹²Mo and ¹⁹⁷Au at 35 A MeV temperature, density, free symmetry energy derived as functions of parameter v_{surf} (measures time when particles leave the source) (S. Kowalski et al., Phys. Rev. C 75 (2007) 014601)

- symmetry energies in RMF calculation without clusters are too small
- very good agreement with QS calculation with light clusters

Summary and Outlook

• theoretical models of EoS with clusters

- quantum statistical approach (QS)
- generalized relativistic mean-field model (gRMF)
- \circ both thermodynamically consistent
- \circ correct limits at low and high densities
- \circ difference in details

Summary and Outlook

• theoretical models of EoS with clusters

- quantum statistical approach (QS)
- generalized relativistic mean-field model (gRMF)
- \circ both thermodynamically consistent
- \circ correct limits at low and high densities
- \circ difference in details

nuclear matter at low densities

- \circ formation of clusters with medium dependent properties
- modification of thermodynamical properties/symmetry energies
- \circ change of phase transition boundaries

for details see Phys. Rev. C 81, 015803 (2010) and Phys. Rev. Lett. 104, 202501 (2010)

Summary and Outlook

• theoretical models of EoS with clusters

- quantum statistical approach (QS)
- generalized relativistic mean-field model (gRMF)
- \circ both thermodynamically consistent
- \circ correct limits at low and high densities
- \circ difference in details

nuclear matter at low densities

- \circ formation of clusters with medium dependent properties
- modification of thermodynamical properties/symmetry energies
- \circ change of phase transition boundaries

for details see Phys. Rev. C 81, 015803 (2010) and Phys. Rev. Lett. 104, 202501 (2010)

• future

- further improvement of RMF parametrization (low-density limit)
- application to astrophysical models
- ⇒ CompStar (compstar-esf.org) initiative: repository of modern EoS for astrophysical applications