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The Life and Death of Stars

when the era of nuclear fusion reactions ends:

e last phases in the life of a massive star
(8Msun < Mstar < 3OJ\4sun)

Y Y

= core-collapse supernova

= neutron star or black hole

X-ray: NASA/CXC/J.Hester (ASU)
Optical: NASA/ESA/J.Hester & A.Loll (ASU)
Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)
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The Life and Death of Stars

when the era of nuclear fusion reactions ends:

e last phases in the life of a massive star
(8Msun 5 Mstar 5 3OJ\4sun)

= core-collapse supernova

= neutron star or black hole

e essential mgredlent In X-ray: NASA/CXC/J.Hester (ASU)
. . ) Optical: NASA/ESA/J.Hester & A.Loll (ASU)
astrophysical model calculations: Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

equation of state (EoS) of dense matter
= dynamical evolution of supernova

= static properties of neutron star

=> conditions for nucleosynthesis

= energetics, chemical composition,

transport properties, . . .

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)
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Thermodynamical Conditions

e densities: 1077 < 0/0gat < 10 (0sar =~ 2.5 - 101 g/cm?)
e temperatures: 0 MeV < kgT < 25 MeV (= 2.9 - 10! K)
e electron fraction: 0 <Y, < 0.6

Tima after bounce t—th =0 seconds Time after baunce 1_th =0.01 saconds
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M. Liebendorfer, R. Kappeli, S. Scheidegger, Universitat Basel
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Thermodynamical Conditions

e densities: 1077 < 0/0gat < 10 (0sar =~ 2.5 - 101 g/cm?)
e temperatures: 0 MeV < kgT < 25 MeV (= 2.9 - 10! K)
e electron fraction: 0 <Y, < 0.6

= global theoretical description of matter properties is required

Tima after bounce t—th =0 seconds Time after baunce 1_th =0.01 saconds
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M. Liebendorfer, R. Kappeli, S. Scheidegger, Universitat Basel
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Equation of State of Dense Matter

e many EoS developed in the past:
from simple parametizations to sophisticated models

e many investigations of detailed aspects:

often restricted to particular conditions (e.g. zero temperature)

e only few EoS used in astrophysical models: most well known
o J.M. Lattimer, F.D. Swesty (Nucl. Phys. A 535 (1991) 331)
o H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi (Prog. Theor. Phys. 100 (1998) 1013)
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Equation of State of Dense Matter

e many EoS developed in the past:
from simple parametizations to sophisticated models

e many investigations of detailed aspects:
often restricted to particular conditions (e.g. zero temperature)

e only few EoS used in astrophysical models: most well known
o J.M. Lattimer, F.D. Swesty (Nucl. Phys. A 535 (1991) 331)
o H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi (Prog. Theor. Phys. 100 (1998) 1013)

e most difficult problem:

description of strongly interacting subsystem (hadronic or quark matter)
in this talk: formation of “clusters” in nuclear matter

e in “standard” astrophysical EoS:

only nucleons, « particle and representative heavy nucleus,
suppression of cluster formation with phenomenological excluded-volume mechanism

= consider more microscopic model, more clusters
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Composition of Nuclear Matter |

e depends strongly on density, temperature and neutron-proton asymmetry

e affects thermodynamical properties
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Composition of Nuclear Matter |

e depends strongly on density, temperature and neutron-proton asymmetry

e affects thermodynamical properties

e theoretical models: different points of view

o chemical picture:
mixture of different nuclear species and nucleons in chemical equilibrium
problems:
— properties of constituents independent of medium
— interaction between particles
— dissolution of nuclei at high densities
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Composition of Nuclear Matter |

e depends strongly on density, temperature and neutron-proton asymmetry

e affects thermodynamical properties

e theoretical models: different points of view

o chemical picture:
mixture of different nuclear species and nucleons in chemical equilibrium
problems:
— properties of constituents independent of medium
— interaction between particles
— dissolution of nuclei at high densities

o physical picture:
correlations of nucleons = formation of bound states
problems:
— treatment of three-, four-, . . . many-body correlations difficult
— choice of interaction

= combination of approaches?
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Composition of Nuclear Matter ||

e low densities:
mixture of nuclei and nucleons
o models with nuclei in statistical equilibrium

(NSE, virial expansion, Beth-Uhlenbeck, . . .)
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mixture of nuclei and nucleons
o models with nuclei in statistical equilibrium

(NSE, virial expansion, Beth-Uhlenbeck, . . .)

e high densities (around/above nuclear saturation):
homogeneous and isotropic neutron-proton matter
o mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . . )
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Composition of Nuclear Matter ||

e low densities:
mixture of nuclei and nucleons
o models with nuclei in statistical equilibrium

(NSE, virial expansion, Beth-Uhlenbeck, . . .)

e high densities (around/above nuclear saturation):
homogeneous and isotropic neutron-proton matter
o mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . . )

e in between at low temperatures:
“liquid-gas” phase transition
o surface effects and long-range Coulomb interaction
o inhomogeneous matter
o formation of “pasta” phases/lattice structures
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Composition of Nuclear Matter ||

e low densities:
mixture of nuclei and nucleons
o models with nuclei in statistical equilibrium

(NSE, virial expansion, Beth-Uhlenbeck, . . .)

e high densities (around/above nuclear saturation):
homogeneous and isotropic neutron-proton matter
o mean-field models (Skyrme Hartree-Fock, relativistic mean-field, . . . )

e in between at low temperatures:
“liquid-gas” phase transition
o surface effects and long-range Coulomb interaction
o inhomogeneous matter
o formation of “pasta” phases/lattice structures

interpolation between low-density and high-density limit needed
= consider quantum statistical approach and generalized relativistic mean-field model
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Quantum Statistical Approach |

e nonrelativistic finite-temperature Green's function formalism

e starting point: nucleon number densities (7 = p,n)

N (T, fip, fin) =2 | (3353 4w f (w)Sr(w) with Fermi distribution f;(w)

and spectral function S-(w) depending on self-energy X

e expansion of spectral function beyond quasiparticle approximation
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Quantum Statistical Approach |

e nonrelativistic finite-temperature Green's function formalism

e starting point: nucleon number densities (7 = p,n)

nr (T, fipy fir) =2 (553 4w f (w)Sr(w) with Fermi distribution f;(w)

and spectral function S (w) depending on self-energy >

e expansion of spectral function beyond quasiparticle approximation

= generalized Beth-Uhlenbeck descripton with
o medium dependent self-energy shifts/binding energies

o generalized scattering phase shifts from in-medium T-matrix

IF/V)

o T', ny, np = [ip, fin = free energy F'(T,n,,n,) by integration (=54

— /17)
= thermodynamically consistent derivation of EoS '
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Quantum Statistical Approach ||

medium modifications

e single nucleon properties
o self-energy shift of quasiparticle energy
o effective mass
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Quantum Statistical Approach ||

medium modifications

e single nucleon properties
o self-energy shift of quasiparticle energy
o effective mass

e cluster properties
o shift of quasiparticle energy from
— nucleon self-energies
— Pauli blocking
= medium dependent binding energies

(calculation with effective
nucleon-nucleon potential)
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Quantum Statistical Approach ||

medium modifications
e single nucleon properties

o self-energy shift of quasiparticle energy

o effective mass

e cluster properties
o shift of quasiparticle energy from
— nucleon self-energies
— Pauli blocking
= medium dependent binding energies

(calculation with effective
nucleon-nucleon potential)

= quasi-particles

symmetric nuclear matter
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parametrization used in generalized RMF model
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Generalized Relativistic Mean-Field (RMF) Model

e extended relativistic Lagrangian density of Walecka type

with nucleons (v, ¥,,), deuterons (%), tritons (v;), helions (¢1,), a-particles (p,),
mesons (o, w,, p,,), electrons (1) and photons (A,,) as degrees of freedom

o only minimal (linear) meson-nucleon couplings

o density-dependent meson-nucleon couplings I,
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Generalized Relativistic Mean-Field (RMF) Model

e extended relativistic Lagrangian density of Walecka type

with nucleons (v, ¥,,), deuterons (%), tritons (v;), helions (¢1,), a-particles (p,),
mesons (o, w,, p,,), electrons (1) and photons (A,,) as degrees of freedom

o only minimal (linear) meson-nucleon couplings

o density-dependent meson-nucleon couplings I,

o parameters: nucleon/meson masses, coupling strengths/density dependence
— in total 10 free parameters (highly correlated)
— constrained from fit to properties of finite nuclei

o medium-dependent cluster binding energies

Clusters and EoS - 8 Stefan Typel



Generalized Relativistic Mean-Field (RMF) Model

e extended relativistic Lagrangian density of Walecka type

with nucleons (v, ¥,,), deuterons (%), tritons (v;), helions (¢1,), a-particles (p,),
mesons (o, w,, p,,), electrons (1) and photons (A,,) as degrees of freedom

o only minimal (linear) meson-nucleon couplings

o density-dependent meson-nucleon couplings I,

o parameters: nucleon/meson masses, coupling strengths/density dependence
— in total 10 free parameters (highly correlated)
— constrained from fit to properties of finite nuclei

o medium-dependent cluster binding energies

= nucleon/cluster/meson/photon field equations,
solved selfconsistently in mean-field approximation

(classical meson/photon fields, Hartree approximation, no-sea approximation)
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EoS with Light Clusters - Generalized RMF Model

e consider 2-, 3-, and 4-body correlations

in the medium L B I
o presently only bound states
(deuterons, tritons, helions, and alphas) ]
. _— _ T=6MeV
o scattering contributions neglected so far < 101k &
s | =04
e Mott effect: 8
clusters dissolve at high densities ©
. . " 5 142k |
e correct limits at low and high densities S 10°¢ :
10_3 -6 5 4I s 3I — e 1I e 0

10° 100 10
density n [fm'ﬁ
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EoS with Light Clusters - Generalized RMF Model

e consider 2-, 3-, and 4-body correlations

in the medium L B I
o presently only bound states
(deuterons, tritons, helions, and alphas) ]
. _— _ T=6MeV
o scattering contributions neglected so far X 10k =
s =04
e Mott effect: 8
clusters dissolve at high densities o
e correct limits at low and high densities o 10°¢
e no heavy clusters/phase transition
included here . | |
10 -6 5 4I s 3I e Y 1I e 0

10 100 10

e medium dependence of couplings and density n [fm]

binding energies
= “rearrangement” contributions in self-energies and source densities
essential for thermodynamical consistency
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EoS with Light Clusters - Cluster Fractions

symmetric nuclear matter generalized RMF model vs. NSE (thin lines)
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EoS with Light Clusters - Pressure/Density

symmetric nuclear matter lim,, .o(p/n) =T (ideal gas)
generalized RMF vs. NSE QS approach vs. NSE
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Phase Transition - Pressure and Chemical Potential

symmetric nuclear matter (Maxwell construction sufficient)

RMF model without (dashed lines) and with (solid lines) clusters
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Heavy Clusters

e liquid-gas phase transition:

separation of low-/high-density phases,
no surface or Coulomb effects
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Heavy Clusters

e liquid-gas phase transition: without light clusters
-1

separation of low-/high-density phases, 10 ! Lo
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. - ! Y =04 !
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. C — | .
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Heavy Clusters

e liquid-gas phase transition: with light clusters

separation of low-/high-density phases, 10 R
no surface or Coulomb effects T=oMev, .
— — 159.4 n=0.01fm I i

- . IS Y =04 !
e first step in improvement: = 10°FZ,,, =662 P L4
spherical Wigner-Seitz cell calculation e B T
L | -
o generalized RMF model 2 LR, =1746fm k L
o Thomas-Fermi approximation g 10°F =
. » I | .
o electrons for charge compensation g S :
o heavy nucleus surrounded by 2 [ |~ S’H ]

. & -

gas of nucleons and light clusters S otk | _
T b |— 3y 5
. . . : : e ]
e first self-consistent calculation with N A i
interacting nucleons, light clusters 5' | ]
and electrons 1070 5 10 15 20

radius r [fm]
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Symmetry Energy |

e general definition for zero temperature:

1 0 FE _
Esn:_—_naﬂ ﬂzw
) =3 oA A A=
= nuclear matter parameters
J = Es(nsat) L=3ngEs| _

e correlation: neutron skin thickness
&< slope of neutron matter EoS (< L)
B. A. Brown, Phys. Rev. Lett. 85 (2000) 5296,

S. Typel, B. A. Brown, Phys. Rev. C 64 (2001) 027302
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Symmetry Energy |

e general definition for zero temperature:

1 0* F

S — m—ttp
= nuclear matter parameters
J = Es(nsat) L=3ngEs| _

e correlation: neutron skin thickness
&< slope of neutron matter EoS (< L)
B. A. Brown, Phys. Rev. Lett. 85 (2000) 5296,

S. Typel, B. A. Brown, Phys. Rev. C 64 (2001) 027302

e with clusters and at finite temperatures:
o use finite differences

Esym(n) = 1 [£(n,1) = 2£(n,0) + Z(n, —1)]
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effects of cluster formation? experimental observation?
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Symmetry Energy ||

temperature 7' = 0 MeV

e mean-field models without clusters

e.g. model with momentum-dependent
interaction (MDI), parameter = controls

density dependence of Egyp,

(B. A. Li et al., Phys. Rep. 464 (2008) 113)

= low-density behaviour not correct

internal symmetry energy Esym(n)/Esym(nO)
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Symmetry Energy ||

temperature 7' = 0 MeV

e mean-field models without clusters

e.g. model with momentum-dependent
interaction (MDI), parameter = controls
density dependence of Egyp,

(B. A. Li et al., Phys. Rep. 464 (2008) 113)

= low-density behaviour not correct

e RMF model with (heavy) clusters

= increase of Egyr, at low densities
due to formation of clusters

= finite symmetry energy
in the [imit n — 0
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T I T T

o
9]
T I T

internal symmetry energy Esym(n)/Esym(nO)

—— o —
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,° — RMF with clusters
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Symmetry Energy Il

finite temperature

e experimental determination of symmetry energy
o heavy-ion collisions of %4Zn on 92Mo and '°7Au at 35 A MeV
temperature, density, free symmetry energy derived as functions of
parameter v, ¢ (Mmeasures time when particles leave the source)
(S. Kowalski et al., Phys. Rev. C 75 (2007) 014601)
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Symmetry Energy Il

finite temperature

e experimental determination of symmetry energy
o heavy-ion collisions of %4Zn on 92Mo and '°7Au at 35 A MeV
temperature, density, free symmetry energy derived as functions of
parameter v, ¢ (Mmeasures time when particles leave the source)

(S. Kowalski et al., Phys. Rev. C 75 (2007) 014601)

e symmetry energies in RMF
calculation without clusters
are too small

e very good agreement
with QS calculation
with light clusters
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Summary and Outlook

e theoretical models of EoS with clusters
o quantum statistical approach (QS)
o generalized relativistic mean-field model (gRMF)
o both thermodynamically consistent
o correct limits at low and high densities
o difference in details
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Summary and Outlook

e theoretical models of EoS with clusters
o quantum statistical approach (QS)
o generalized relativistic mean-field model (gRMF)
o both thermodynamically consistent
o correct limits at low and high densities
o difference in details

¢ nuclear matter at low densities
o formation of clusters with medium dependent properties
o modification of thermodynamical properties/symmetry energies
o change of phase transition boundaries

for details see Phys. Rev. C 81, 015803 (2010) and Phys. Rev. Lett. 104, 202501 (2010)
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Summary and Outlook

e theoretical models of EoS with clusters
o quantum statistical approach (QS)
o generalized relativistic mean-field model (gRMF)
o both thermodynamically consistent
o correct limits at low and high densities
o difference in details

¢ nuclear matter at low densities
o formation of clusters with medium dependent properties
o modification of thermodynamical properties/symmetry energies
o change of phase transition boundaries

for details see Phys. Rev. C 81, 015803 (2010) and Phys. Rev. Lett. 104, 202501 (2010)

e future
o further improvement of RMF parametrization (low-density limit)
o application to astrophysical models
= CompStar (compstar-esf.org) initiative:
repository of modern EoS for astrophysical applications
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