

Precision measurements of ²⁰Na, ²⁴AI, ²⁸P, ³²CI, and ³⁶K for the *rp* process

Chris Wrede Center for Experimental Nuclear Physics and Astrophysics University of Washington NIC XI, Heidelberg, Germany July 22^{nd,} 2010

Collaboration

C. Wrede,^{1,2}, J. A. Clark,^{2,3} C. M. Deibel,^{2,3,4} T. Faestermann,⁵ R. Hertenberger,⁶ A. Parikh,⁵ H.-F. Wirth,⁶ S. Bishop,⁵ A. A. Chen,^{7,8} K. Eppinger,⁵ B. M. Freeman¹, A. Garcia,¹ R. Kruecken,⁵ O. Lepyoshkina,⁵ G. Rugel,⁵ and K. Setoodehnia⁷

¹CENPA, University of Washington, Seattle, Washington, USA
 ²WNSL, Yale University, New Haven, Connecticut, USA
 ³Argonne National Laboratory, Argonne, Illinois, USA
 ⁴JINA, Michigan State University, East Lansing, Michigan, USA
 ⁵Technische Universitaet Muenchen, Garching, Germany
 ⁶Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany
 ⁷McMaster University, Hamilton, Ontario, Canada
 ⁸DFG Cluster of Excellence (Universe), Technische Universitaet Muenchen, Garching, Michigan Muenchen, Garching, Germany

Outline

- Motivation: explosive hydrogen burning
- Targets: ion implanted at CENPA
- Experiment: (³He,*t*) with Munich Q3D
- Results: general (²⁰Na, ²⁴Al, ²⁸P, ³²Cl, ³⁶K)
- Results: ²³Mg(*p*,γ)²⁴Al
- Results: ³⁵Ar(*p*,γ)³⁶K
- Conclusions

Motivation

- Explosive hydrogen burning^{*a,b,c*}
- (p,γ) reactions on the unstable even-Z, T_z = 1/2 nuclei ¹⁹Ne, ²³Mg, ²⁷Si, ³¹S, and ³⁵Ar dominated by resonant contributions
- Low Q values: statistical methods unreliable
- Need experimental information
 on resonances
- Direct RIB measurement not yet possible in most cases^{d,e,f}
- Use (³He,*t*) reaction on stable targets to determine properties of resonances indirectly
- $E_{\rm r} = E_{\rm x} Q_{\rm py}$

UNIVERSITY OF

WASHINGTON

^aRembges *et al.* ApJ **484**, 412 (1997) ^bIliadis *et al.*, ApJ **524**, 434 (1999) ^cHerndl *et al.*, PRC **58**, 1798 (1998) ^dVancraeynest *et al.*, PRC, **57**, 2711 (1998) ^eErikson *et al.*, PRC **81**, 045808 (2010) ^fCouder *et al.*, NIC_XI_189

Figure adapted from: Rembges *et al.* ApJ **484**, 412 (1997)

Targets: U. of Washington, CENPA

- Need thin targets of ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar
- Prefer similar, solid targets
- But chemical properties
 differ dramatically
- Solution: implant ions into five thin carbon foils of same thickness
- Same method for every target

Targets: U. of Washington, CENPA

- Need thin targets of ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar
- Prefer similar, solid targets
- But chemical properties
 differ dramatically
- Solution: implant ions into five thin carbon foils of same thickness
- Same method for every target

Target properties

- Carbon foil: 30 μg/cm²
- Implanted: 3 to 6 µg/cm² of isotopically pure material
- four or six "layers" implanted $(~1 \mu g/cm^2 each)$
- Takes ~1 week/target
- E.g., ²⁴MgH⁻ @ 37.5 keV and 25 keV, ~100 nA
- Symmetric depth distribution
- **Uniform transverse** distribution in region where 1 x 3 mm beam hits

140

0.71

0.68

Areal Density (μg/cm²)

0.53

0.5

0.4

0.2

18F 16⊦

12-

-0.4

-0.4

-0.2

0 x (cm)

Target properties

- Carbon foil: 30 μg/cm²
- Implanted: 3 to 6 µg/cm² of isotopically pure material
- four or six "layers" implanted $(~1 \mu g/cm^2 each)$
- Takes ~1 week/target
- E.g., ²⁴MgH⁻ @ 37.5 keV and 25 keV, ~100 nA
- Symmetric depth distribution
- **Uniform transverse** distribution in region where 1 x 3 mm beam hits

140

0.71

0.68

0.53

0.5

0.4

0.2

18F 16⊦

-0.2

-0.4

-0.4

-0.2

0 x (cm)

Experiment: (³He,*t*) with Munich Q3D

• 6 days, November 2009

UNIVERSITY OF WASHINGTON

- 32 MeV, 400 enA ³He²⁺ beam
- Measurements at two angles: 10° and 20°
- Cycle ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, and ³⁶Ar targets
- Detect triton positions at focal plane
- Determine triton momenta from focal-plane position
- Momentum calibration using ³⁶Ar(³He,t)³⁶K*
- Determine masses and excitation energies from momenta

Wrede et al., PRC 81, 255503 (2010)

Experiment: (³He,*t*) with Munich Q3D

• 6 days, November 2009

UNIVERSITY OF WASHINGTON

- 32 MeV, 400 *e*nA ³He²⁺ beam
- Measurements at two angles: 10° and 20°
- Cycle ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, and ³⁶Ar targets
- Detect triton positions at focal plane
- Determine triton momenta from focal-plane position
- Momentum calibration using ³⁶Ar(³He,t)³⁶K*
- Determine masses and excitation energies from momenta

Wrede et al., PRC 81, 255503 (2010)

Results: general

- Masses of ²⁰Na, ²⁴Al, ²⁸P, and ³²Cl to precisions of 1.1 or 1.2 keV/c²
- Excitation energies in ³²Cl and ³⁶K to precisions of < 1 keV
- Improved resonance energies for ¹⁹Ne(p,γ)²⁰Na, ²³Mg(p,γ)²⁴Al, ²⁷Si(p,γ)²⁸P, ³¹S(p,γ)³²Cl, and ³⁵Ar(p,γ)³⁶K reactions
- Focus on ²⁴Al and ³⁶K...

Wrede et al., PRC 81, 255503 (2010)

^{cτοκ} Results: ²³Mg(*p*,γ)²⁴Al

- $E_{\rm r} = E_{\rm x} Q_{\rm p\gamma}({\rm old}) = 473(3) \, {\rm keV^a}$
- $E_{\rm r}$ (direct) = 485.7^{+1.3}_{-1.8} keV^b
- Reducible uncertainty in ωγ
- Measure ²⁴Al mass excess to be 9.5 keV (3.2σ) different from AME03
- $E_{\rm r} = E_{\rm x} Q_{\rm py}({\rm new}) = 482.1(20) \, {\rm keV}$
- Constrains ωγ from 38⁺²¹-15 meV to 27⁺¹⁵-7 meV
- Excellent agreement with ωγ from shell model (25 meV)^c and mirror level (27 meV)^d

^aLotay *et al.*, PRC **77**, 042802 (2008) & AME03 ^bErikson *et al.*, PRC **81**, 045808 (2010) ^cHerndl *et al.*, PRC **58**, 1798 (1998) ^dKubono *et al.* NPA **588**, 521 (1995)

Wrede *et al.* (in preparation for PRC); thanks to C. Ruiz for probability density

Results: ³⁶Ar(³He,*t*)³⁶K

• Improved resolution

- New level found in region of interest $(E_x = 2197 \text{ keV}, E_r = 538.5 \text{ keV})$
- Uncertainties in excitation energies improved from 30 keV to < 1 keV

Wrede et al., in preparation for PRC

Results: A = 36, T = 1 isobaric triplets

- Reexamined isobaric triplets due to new level and new energies
- Leads to rearrangement of optimal ³⁶K mirror levels
- $E_r(2_2^+): 224(21) \longrightarrow 259.9(9) \text{ keV}$
- $E_r(2_3^+): 744(31) \longrightarrow 623.4(7) \text{ keV}$
- Recalculate thermonuclear ³⁵Ar(p,γ)³⁶K reaction rate using new level, new energies, & new mirror assignments (i.e. spins and partial widths)
- Besides new data, method identical to Iliadis *et al.*, ApJ **524**, 434 (1999)

Wrede et al., in preparation for PRC

Predict E_x (keV):

 $E_x({}^{36}\text{K}) = 2E_x^*({}^{36}\text{Ar}) - E_x({}^{36}\text{CI})$ [Iliadis *et al.*, ApJ **524**, 434 (1999)]

predicted $E_x~({\rm ^{36}K})$ measured $E_x~({\rm ^{36}K})$	
present	present
1723	1707
1931	1918
2186	2197
2288	2282

 $Q_{p\gamma} = 1658 \text{ keV}$

Results:

Change in ${}^{35}Ar(p,\gamma){}^{36}K$ rate

[compared to Iliadis et al., ApJ 524, 434 (1999)]

 Could have significant effect on energy generation in type I x-ray bursts [e.g. Parikh *et al.*, ApJSS **178**, 110 (2008)]

Wrede et al., in preparation for PRC

Conclusions

- Measured masses of ²⁰Na, ²⁴AI, ²⁸P, ³²CI to high precision
- Resolved discrepancy in energy of lowest-energy ${}^{23}Mg(p,\gamma){}^{24}Al$ resonance, and constrained its strength
- Measured excitation energies in ³²Cl and ³⁶K to high precision
- Discovered new ${}^{35}Ar(p,\gamma){}^{36}K$ resonance
- Rearranged A = 36, T = 1 triplets
- Substantial change in ³⁵Ar(p,γ)³⁶K rate: could affect energy generation in type I x-ray bursts
- Mass measurements also influence fundamental tests
 [e.g. scalar-current searches in ³²Ar β-ν_e correlation
 Adelberger *et al.* PRL **83**, 1299 (2009); Blaum *et al.* PRL

 91, 260801 (2003); Wrede *et al.* PRC **81** 255503 (2010)]

Other interesting results

• The ³²Cl mass measurement also influences fundamental tests via mass excess of lowest T = 2 level in ³²Cl

-best test of quadratic IMME

-scalar-current constraints from $^{32}\text{Ar}\ \beta\text{-}\nu_e$ correlation shifted by 1σ

Adelberger *et al.* PRL **83**, 1299 (2009) Blaum *et al.* PRL **91**, 260801 (2003) Wrede *et al.* PRC **81** 255503 (2010)

Thank You!

Collaboration

C. Wrede,^{1,2}, J. A. Clark,^{2,3} C. M. Deibel,^{2,3,4} T. Faestermann,⁵ R. Hertenberger,⁶ A. Parikh,⁵ H.-F. Wirth,⁶ S. Bishop,⁵ A. A. Chen,^{7,8} K. Eppinger,⁵ B. M. Freeman¹, A. Garcia,¹ R. Kruecken,⁵ O. Lepyoshkina,⁵ G. Rugel,⁵ and K. Setoodehnia⁷

¹CENPA, University of Washington, Seattle, Washington, USA
 ²WNSL, Yale University, New Haven, Connecticut, USA
 ³Argonne National Laboratory, Argonne, Illinois, USA
 ⁴JINA, Michigan State University, East Lansing, Michigan, USA
 ⁵Technische Universitaet Muenchen, Garching, Germany
 ⁶Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany
 ⁷McMaster University, Hamilton, Ontario, Canada
 ⁸DFG Cluster of Excellence (Universe), Technische Universitaet Muenchen, Garching, Michigan Muenchen, Garching, Germany