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Outline

• Basics of stellar evolution 

• Basics of abundance studies 

• Galactic components 

• Galactic surveys
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How everything formed…
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First stars

First galaxies

Big Bang



Chiara Battistini HGSFP winter school

Big Bang

4

Temperature extremely high (~1010 K) 

After few minutes we had the formation 
of the first elements

4He

7Be

7Li
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Big Bang

4

Temperature extremely high (~1010 K) 

After few minutes we had the formation 
of the first elements

4He

7Be

7Li
Final composition of the Universe

75% H
25% He

traces of Li
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Table of the elements for astronomers

H He

Meta
ls
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Stellar 

evolution
ESO
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Color-Magnitude diagram
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APOD



Chiara Battistini HGSFP winter school

HR diagram
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HR diagram
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Mass-Luminosity relation
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APOD

Main 
sequence

APOD
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Main-sequence

12

Star is in equilibrium
gravity = radiation pressure

H      He

H, He, Z

Tcore = 107 K
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2D
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7Be e�

7Li

pp II
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e+, ⌫
e+, ⌫

2D 2D

3He 3He

4He

p

pp I

Sun-like stars

13

e+, ⌫

2D

3He

7Be e�

7Li

pp II
⌫

e+, ⌫
8B

8Be

pp III

Energy released
in formation of 4He

26.73 MeV



Chiara Battistini HGSFP winter school

Higher-mass stars

14

Higher quantity of “metals”
 + 

higher temperature in the centre (~ 2x107 K)

14N

13N

16C 12C

15O

13C

15N

17O

17F
e+, ⌫ e+, ⌫

e+, ⌫

4He

p

CNO 
cycle
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Higher-mass stars

14

Higher quantity of “metals”
 + 

higher temperature in the centre (~ 2x107 K)

14N

13N

16C 12C

15O

13C

15N

17O

17F
e+, ⌫ e+, ⌫

e+, ⌫

4He

p
Energy released

in formation of 4He
~ 25 MeV

(because of ν)

CNO 
cycle
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End of Main Sequence

16

When the H in the center is exhausted...

Star is NOT in equilibrium 
gravity > radiation pressure
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End of Main Sequence

16

When the H in the center is exhausted...

Star is NOT in equilibrium 
gravity > radiation pressure

H, He, Z

He

H, He, Z

He
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Red Giant Branch

17

Star contracts —> T increase toward the center
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Red Giant Branch

17

Nuclear reactions
in a small shell 

outside the center

Star contracts —> T increase toward the center

H       He
via CNO cycle

Tshell = 3x107 K

H, He, Z

He
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Red Giant Branch

17

Nuclear reactions
in a small shell 

outside the center

Star contracts —> T increase toward the center

New energy supplies
—> star expands

H       He
via CNO cycle

Tshell = 3x107 K

H, He, Z

He
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Red Giant Branch

17

Nuclear reactions
in a small shell 

outside the center

Star contracts —> T increase toward the center

New energy supplies
—> star expands

H       He
via CNO cycle

Tshell = 3x107 K

H, He, Z

He

H, He, Z

HeHe
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APOD

Red
giant 

branch

APOD
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Dredge-up

19

On RGB envelope become convective from just outside the
H-shell burning up to surface.
The base of the convective envelope reaches layers where 
nuclear processes have taken place earlier so H-burning 
ashes make their way to surface (like He or N)
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Mass loss

20

During RGB phase stars suffer from mass loss do to 
stellar winds. 
The exact relation behind mass loss is still not clear
(likely it has some dependency with metallicity)
—> more metal => more mass loss
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Mass loss

20

During RGB phase stars suffer from mass loss do to 
stellar winds. 
The exact relation behind mass loss is still not clear
(likely it has some dependency with metallicity)
—> more metal => more mass loss

The amount of envelope still present in the star determines 
where the star will end up in the next evolutionary stage
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End of RGB

21

H       He
via CNO cycle

mass of He increases so also 
the density increases

He



Chiara Battistini HGSFP winter school

End of RGB

21

H       He
via CNO cycle

mass of He increases so also 
the density increases

at some point T in the center
will be high enough to ignite 

He burning (~2x108 K)
He
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APOD

Horizontal
branch

APOD
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APOD

Horizontal
branch

APOD

Position on HB 

how much 
envelope is left 

after mass 
loss on RGB
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Horizontal Branch

23

Phase characterised by C production in the core

Timescale of stable He burning in the core is much
shorter than MS —> ~108 yr for a Sun-like star

Convective core
He—> C Shell burning

H—> He (CNO)

Shallow
convective
envelope
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H      He

4He

8Be

4He

4He

12C

4He

16O

Tcore = 2x108 K



Chiara Battistini HGSFP winter school 24

H      He

The core of the star now will be made by carbon
and some oxygen (80% C and 20% O)

4He

8Be

4He

4He

12C

4He

16O

Tcore = 2x108 K
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H      He

The core of the star now will be made by carbon
and some oxygen (80% C and 20% O)

4He

8Be

4He

4He

12C

4He

16O

Energy released
in formation of C

~3 MeVTcore = 2x108 K
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At this point we have to make a distinction…

M < 8 MO

M > 8 MO
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APOD

Asymptotic
giant branch

APOD
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When He depletes in the centre
—> core contracts and heats up 
—>  He starts to burn in a shell at the C-O boundary 
—> envelope expands and starts convection.

Stars with M < 8 M0

27

C/O core
He burning shell

He —> C,O
H burning shell

H —> He (CNO)

Deep convective
envelope



Chiara Battistini HGSFP winter school

When He depletes in the centre
—> core contracts and heats up 
—>  He starts to burn in a shell at the C-O boundary 
—> envelope expands and starts convection.

Stars with M < 8 M0

27

Second 
dredge-up

C/O core
He burning shell

He —> C,O
H burning shell

H —> He (CNO)

Deep convective
envelope
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Thermal pulses 

28

A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process
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Thermal pulses 
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A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process

For most of the cycle H is burned in the external 
shell because the inner one is extinct 
—> He layer grows in mass

1
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Thermal pulses 

28

A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process

For most of the cycle H is burned in the external 
shell because the inner one is extinct 
—> He layer grows in mass

The He layer contracts and T rises igniting He shell
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Thermal pulses 

28

A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process

For most of the cycle H is burned in the external 
shell because the inner one is extinct 
—> He layer grows in mass

The He layer contracts and T rises igniting He shell

Upper layers expand and cool, stopping the 
burning of the H-shell,
while the He-shell advances and catches up with 
the extinct H-shell

1

2

3
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Thermal pulses 

28

A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process

For most of the cycle H is burned in the external 
shell because the inner one is extinct 
—> He layer grows in mass

The He layer contracts and T rises igniting He shell

Upper layers expand and cool, stopping the 
burning of the H-shell,
while the He-shell advances and catches up with 
the extinct H-shell

H-shell reignites because of high T and He-shell 
stops
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Thermal pulses 

28

A thermally unstable configuration leads to a long series of thermal 
pulses because the two nuclear burning processes do not allow a steady 
state ==> cycling process

For most of the cycle H is burned in the external 
shell because the inner one is extinct 
—> He layer grows in mass

The He layer contracts and T rises igniting He shell

Upper layers expand and cool, stopping the 
burning of the H-shell,
while the He-shell advances and catches up with 
the extinct H-shell

H-shell reignites because of high T and He-shell 
stops

1

2

3

4

One cycle is 100-1000 yr
+

growth of C-O core
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Planetary nebula

29

Stars is now in the supergiant region of HR diagram
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Planetary nebula
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Stars is now in the supergiant region of HR diagram
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Planetary nebula

29

Stars is now in the supergiant region of HR diagram

Envelope is loose and the wind is strong so it is shed away
leaving a C-O core of 0.6-1.1 M�
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Planetary nebula

29

Stars is now in the supergiant region of HR diagram

Envelope is loose and the wind is strong so it is shed away
leaving a C-O core of 0.6-1.1 M�

Planetary nebula 
+ 

white dwarf



WD

Nothing to do with planets!
William Hershel coined the 
name because he found 
them to resemble Uranus
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White 
dwarfs

APOD
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High-mass stars

32

“onion-like” structure

H

He

C

O

Si

Fe

Burning
shells

Fusion of elements continue 
after C burning

Silicon burning
Tcore ≳ 3x109 K
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High-mass stars

32

“onion-like” structure

H

He

C

O

Si

Fe

Burning
shells

Fusion of elements continue 
after C burning

Silicon burning
Tcore ≳ 3x109 K

Energy released
in Si burning
< 0.18 MeV
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This is the end of the star
Now there is no way to get energy from fusion of Fe
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This is the end of the star
Now there is no way to get energy from fusion of Fe

Fusion

Fission
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No production of energy via fusion but core continues to 
contract and increases temperature losing energy

photodisintegration
 56Fe + γ        13 4He + 4n 
     4He + γ          2 H + 2n

Endotermic 
reactions



Chiara Battistini HGSFP winter school 34

No production of energy via fusion but core continues to 
contract and increases temperature losing energy

photodisintegration
 56Fe + γ        13 4He + 4n 
     4He + γ          2 H + 2n

Endotermic 
reactions

The star contracts, the core increases its density until it 
reaches 1015 g/cm3 becoming incompressible

H + e-        n + νe
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The core is supported by neutrons, the outer layers are in 
free fall and bounce on the core

No production of energy via fusion but core continues to 
contract and increases temperature losing energy

photodisintegration
 56Fe + γ        13 4He + 4n 
     4He + γ          2 H + 2n

Endotermic 
reactions

The star contracts, the core increases its density until it 
reaches 1015 g/cm3 becoming incompressible

H + e-        n + νe
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The core is supported by neutrons, the outer layers are in 
free fall and bounce on the core

EXPLOSION!

No production of energy via fusion but core continues to 
contract and increases temperature losing energy

photodisintegration
 56Fe + γ        13 4He + 4n 
     4He + γ          2 H + 2n

Endotermic 
reactions

The star contracts, the core increases its density until it 
reaches 1015 g/cm3 becoming incompressible

H + e-        n + νe
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Supernovae
II
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Supernovae
II

All elements produced in the stellar lifetime are released
(𝛼- elements)



Chiara Battistini HGSFP winter school 35

Supernovae
II

Explosion nucleosynthesis: Sc, Co and Ni and some Fe

All elements produced in the stellar lifetime are released
(𝛼- elements)
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Depending on the mass of the progenitor
the remnant of a SN II will be

Black holeNeutron star

Stars with
8M  < M < 25M 

Stars with
 M > 25M �� �
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And what about the other elements close to Fe?

Supernovae Ia
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Single degenerate scenario

38
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Single degenerate scenario
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Double degenerate scenario
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Double degenerate scenario
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Double degenerate scenario
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Double degenerate scenario

39

C ignition and a thermonuclear runaway causing a complete explosive 
disruption of the white dwarf
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Double degenerate scenario

39

SN Ia nucleosynthesis: mainly Fe, Mn and some 𝛼 elements

C ignition and a thermonuclear runaway causing a complete explosive 
disruption of the white dwarf



Chiara Battistini HGSFP winter school 40

And all the other elements?

neutron capture
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What is neutron capture?

41
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What is neutron capture?

41

I(A,Z) + n             I1(A+1,Z)
I1(A+1,Z) + n        I2(A+2,Z)

......
IN-1(A+N-1,Z) + n        IN(A+N,Z)
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What is neutron capture?

41

I(A,Z) + n             I1(A+1,Z)
I1(A+1,Z) + n        I2(A+2,Z)

......
IN-1(A+N-1,Z) + n        IN(A+N,Z)

if IN is stable the n capture can continue

if IN (radioactive isotope) not stable        decay
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What is neutron capture?

41

I(A,Z) + n             I1(A+1,Z)
I1(A+1,Z) + n        I2(A+2,Z)

......
IN-1(A+N-1,Z) + n        IN(A+N,Z)

New element

if IN is stable the n capture can continue

if IN (radioactive isotope) not stable        decay
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IN(A+N,Z)      J(A+N,Z+1) + e- + ν


42
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IN(A+N,Z)      J(A+N,Z+1) + e- + ν


42

if the new element is stable
 it can start again neutron capture
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IN(A+N,Z)      J(A+N,Z+1) + e- + ν


42

if the new element is stable
 it can start again neutron capture

if the new element is not stable
it will start a series of decays
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IN(A+N,Z)      J(A+N,Z+1) + e- + ν


42

 J(A+N,Z+1)            K(A+N,Z+2) + e- + ν

K(A+N,Z+2)           L(A+N,Z+3) + e- + ν  

.......

if the new element is stable
 it can start again neutron capture

if the new element is not stable
it will start a series of decays
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IN(A+N,Z)      J(A+N,Z+1) + e- + ν


42

 J(A+N,Z+1)            K(A+N,Z+2) + e- + ν

K(A+N,Z+2)           L(A+N,Z+3) + e- + ν  

.......

if the new element is stable
 it can start again neutron capture

if the new element is not stable
it will start a series of decays

until a stable nucleus of mass A+N and 
atomic number Z+M is produced 
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Different neutron processes

43
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r-elements derive from SN II (most probably)
due to the large amount of n during the explosion

Rapid neutron capture
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(when we have nuclear processes in two shells)

Rapid neutron capture

Slow neutron capture
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Different neutron processes

43

r-elements derive from SN II (most probably)
due to the large amount of n during the explosion

s-elements derive from AGB phase
(when we have nuclear processes in two shells)

All the other elements are created in a combination
of the two processes, sometimes still unclear the proportion

Rapid neutron capture

Slow neutron capture
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Summary

44
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Summary

44

Low mass stars produce: He, s-elements, Fe peak 
elements with SN Ia



Chiara Battistini HGSFP winter school

Summary

44

Low mass stars produce: He, s-elements, Fe peak 
elements with SN Ia

High mass stars produce: s-elements, r-elements,
 elements till Fe peak elements with SN II
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Stellar spectroscopy

45
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Stellar spectrum
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Stellar spectrum
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Stellar spectrum

46

High resolution solar spectrum
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Abundance determination

47
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Ingredients needed…

48

First approximation:
deeper the line => higher abundance



Chiara Battistini HGSFP winter school

Ingredients needed…

• High resolution spectra

• Determination of the stellar parameters

• Stellar atmosphere model

• Linelist (log gf, hfs, isotopic shift, blendings)

48

First approximation:
deeper the line => higher abundance
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High resolution

49

Important to determine how well we can resolve close lines in the spectra
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Stellar parameters

50

Absorption lines in stellar spectra are influenced by stellar parameters 

courtesy or Karin Lind 

—> need to determine stellar parameters first
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Stellar parameters

50

Absorption lines in stellar spectra are influenced by stellar parameters 

Effective T (Teff) • colour (difference between different filters)
• ratios of suitable strong lines

Log(g)
• ratios Fe II vs Fe I
• profile of strong lines (Ca II triplet, Na I doublet)
• parallax
• calibrated photometry
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Stellar parameters

50

Absorption lines in stellar spectra are influenced by stellar parameters 

Effective T (Teff) • colour (difference between different filters)
• ratios of suitable strong lines

Log(g)
• ratios Fe II vs Fe I
• profile of strong lines (Ca II triplet, Na I doublet)
• parallax
• calibrated photometry

Metallicity
(first guess of [Fe/H])

• calibrated photometry
courtesy or Karin Lind 

—> need to determine stellar parameters first
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Stellar atmosphere model

55

credit:  B. Freytag

Models are usually in 1D 
—> approximation!

Some 3D models available 
for some kind of stars
—> computationally heavy!

<3D> models
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Linelist

56

List of transitions lines in a certain wavelength region

Why is it important?

•  use the right atomic parameters to describe the
   spectral line(s) (especially log gf) of interest

• taking into account hyperfine splitting and/or isotopic
  shift in the line(s) of interest

•  know all the transitions that can affect the region
   or the line of interest
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Linelist I: atomic parameters

57

Ruffoni et al. (2014)

The oscillator strength (log gf) expresses the probability of absorption in 
transitions between energy levels of an atom or molecule 

Important to know to correctly fit a line and get a correct abundance
—> important lab work!
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Linelist II: hfs + isotopic shift

58

Hyperfine splitting (hfs): interaction between the magnetic moment of the 
nucleus’ spin and the magnetic moment of the electron’s spin because the 
nucleus has an odd number of p and/or an odd number of n
—> broaden the absorption line profile
Isotopic shift: most elements have more than one isotope with different 
nuclear masses and charge distribution
—> broaden the absorption line profile
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Linelist III: blendings

59

4687.2 4687.4 4687.6 4687.8 4688 4688.20.8
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Several lines can be present in the wavelenght region of interest.

This is particulary true in the blue part of the spectrum where more 
transitions happen

Important to know which
transition lines can affect
the measurement of the 
line of interest
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Abundance measurements

60

Pro: more direct

Cons: more difficult to take
care of blendings and hfs
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Abundance measurements

60

Pro: more direct

Cons: more difficult to take
care of blendings and hfs

Observed spectrum

Synthetic spectrum

Pro: easier to work with hfs
and blendings

Cons: need good models
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Example
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Abundance calculation
1. Log ε(A) = log (NA/NH)+12

2. [X / H] = log10 (NX / NH)★ - log10 (NX / NH)☉

61

Example

Log ε(Mg)★  = 5.96, Log ε(Fe)★  = 5.50

Log ε(Mg)☉  = 7.60, Log ε(Fe)☉  = 7.50

[Mg / H] = Log ε(Mg)★ - Log ε(Mg)☉= -1.64

[Fe / H] = Log ε(Fe)★ - Log ε(Fe)☉= -2.00
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Abundance ratios

62

[X / H] = log10 (NX / NH)★ - log10 (NX / NH)☉
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Abundance ratios
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[X / H] = log10 (NX / NH)★ - log10 (NX / NH)☉

One important abundance is [Fe/H], that can be derived as:

[Fe / H] = Log ε(Fe)★ - Log ε(Fe)☉
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Abundance ratios

62

[X / H] = log10 (NX / NH)★ - log10 (NX / NH)☉

One important abundance is [Fe/H], that can be derived as:

[Fe / H] = Log ε(Fe)★ - Log ε(Fe)☉

If you want to relate another element, like for example Mg,
with Fe then you have:

[Mg / H] = Log ε(Mg)★ - Log ε(Mg)☉

[Mg / Fe] = [Mg / H] - [Fe / H]
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Abundance plots

63

We saw that different elements are produced in different
moments during stellar evolution

The comparison of abundances of different elements can 
give us information about production sites and chemical 
evolution

SN II —> 𝛼-elements, r-process elements
SN Ia —> iron-peak elements
AGB —> s-process elements
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Abundance plot

64

[Fe/H]
+0.50-0.5-1

[X/H] 0

+0.5

-0.5

Comparison of two different abundance ratios

Values are in logarithmic scale with Sun as reference

10 times less Fe than the Sun
3 times more Fe than the Sun

0.5 dex
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[A/B]

[B/X]

+B
=> Elements A, B
     produced in 
     different processes
     or sites.

[A/X]

[B/X]

+A, +B => Elements A, B  
     produced in the
     same process or
     site.

[A/B]

[B/X]

+A, +B

[A/X]

[B/X]

+B
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Chemical enrichment
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Chemical enrichment
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Stars

star 
formation

new elements
in the ISM
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Chemical enrichment

67
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Star formation: important 
concepts

• Star formation rate (SFR) how much gas is 
transformed in stars. Expressed in solar masses/yr. 

• Initial mass function (IMF) how many stars of 
different masses are produced with a defined 
amount of gas. 

• Star formation history (SFH) study of the different 
past episodes of star formation that a system 
underwent.

68
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Star formation history

69

−1.5 −1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

[Fe / H]

[!
 / 

Fe
]

IMF SFR

With 𝛼 elements we refer to
Mg, Ca, Si, O, Ti Reminder: 𝛼 elements are

mainly produced in SNII events

Proxy for age
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Example

70

[Fe/H]

[O
/H

]

-3.0

+0.5

0 

-2.0 -1.0 0 +1.0

+1.0

Bulges + Ellipticals

Solar vicinity

Magellanic Clouds
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Reality

71

Tolstoy et al. (2009)
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The Milky Way

You are here
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Small recap
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[Fe/H]
+0.50-0.5-1

[X/H] 0

+0.5

-0.5 0.5 dex

[Fe / H] = Log ε(Fe)★ - Log ε(Fe)☉

SN II —> 𝛼-elements, r-process elements
SN Ia —> iron-peak elements
AGB —> s-process elements
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Star formation history
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−1.5 −1 −0.5 0 0.5
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0
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 / 
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IMF SFR

With 𝛼 elements we refer to
Mg, Ca, Si, O, Ti Reminder: 𝛼 elements are

mainly produced in SNII events

Proxy for age
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Structure of the Milky Way
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artistic impression of MW seen face-on

Total mass ~ few 1011 MO .
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Structure of the Milky Way

75
source supernovacondensate.net

artistic impression of MW seen face-on

Total mass ~ few 1011 MO .

http://supernovacondensate.net
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Characteristics
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The different components of the Milky Way
have different properties regarding chemical 

abundances and kinematics
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Characteristics

76

The different components of the Milky Way
have different properties regarding chemical 

abundances and kinematics

Possible to reveal the past history of formation 
and evolution of the Milky Way because chemical patterns 

might store fossil records of the physical characteristics of the 
ISM at the time and place of their birth and the physical 

processes which affect them
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Different observables
• DWARF STARS (like the Sun) 

Pro: atm composition preserved 
easy abundance 
Cons: not very bright so they are  
not observable too far 

• GIANT STARS
Pro: brighter, so can be observed  
further away
Cons: atm composition can also  
be not the original

77

Each component has its best (or only) way
to be observed!

SU 10 -3 Solar Radius

10 -2 Solar Radius

0.1 Solar Radius

1 Solar Radius

10 Solar Radi

102 Solar Radi
103 Solar Radi
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Halo

T. Beers, Nature 486, 38–40
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Halo

T. Beers, Nature 486, 38–40
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Halo

• Spherical component around Milky Way disk 
(100-200 kpc) 

• Low star density 

• Contains the oldest and the most metal-poor stars 
of the Galaxy (main population has [Fe/H] < -1)

• Contains the relics of accretion events 

79
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Metal-poor stars
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H
E 
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6 

Frebel et al. (2010)
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Metal-poor stars
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Chiara Battistini HGSFP winter school

Why are they important?

82
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Non uniform Stable

Understanding nucleosynthesis

83

Sneden, Cowan & Gallino (2008)
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Dual halo

84
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• Vtot > 160 km/s for halo stars
• -1.6 < [Fe/H] < -0.4

inner halo

outer halo

Inner component: 0 or some pro-
grade rotation, stars originated in 
situ.

Outer component: large majority 
of the mass of the halo, more 
metal-poor with retrograde 
rotation, probably accreted.
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• Vtot > 160 km/s for halo stars
• -1.6 < [Fe/H] < -0.4

inner halo

outer halo

Inner component: 0 or some pro-
grade rotation, stars originated in 
situ.

Outer component: large majority 
of the mass of the halo, more 
metal-poor with retrograde 
rotation, probably accreted.

Nissen & Schuster (2010)



Chiara Battistini HGSFP winter school
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• Vtot > 160 km/s for halo stars
• -1.6 < [Fe/H] < -0.4

inner halo

outer halo

Difference is ~ 0.1dex
—> more stars and better
 measurements needed

Inner component: 0 or some pro-
grade rotation, stars originated in 
situ.

Outer component: large majority 
of the mass of the halo, more 
metal-poor with retrograde 
rotation, probably accreted.

Nissen & Schuster (2010)
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Stellar streams
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In the halo there is presence of kinematic substructures, evidence of 
past merging events 
—> streams disrupted satellites should still mantain certain

clumpiness in configuration and velocity space
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Stellar streams

85

In the halo there is presence of kinematic substructures, evidence of 
past merging events 
—> streams disrupted satellites should still mantain certain

clumpiness in configuration and velocity space

Simulation of how 
stars from different
satellites would keep
kinematics info after
12 Gyr from accretion

Helmi & de Zeeuw (2000)



Chiara Battistini HGSFP winter school

Stellar streams

85

In the halo there is presence of kinematic substructures, evidence of 
past merging events 
—> streams disrupted satellites should still mantain certain

clumpiness in configuration and velocity space

Simulation of how 
stars from different
satellites would keep
kinematics info after
12 Gyr from accretion

Helmi & de Zeeuw (2000)

Real data

Antoja et al. (2012)
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Stellar streams

86

Color = distance of the stars 
Intensity = density of stars 

Structures visible in this map: 
- Sagittarius dwarf galaxy
- a smaller 'orphan' stream 

crossing the Sagittarius 
streams

-  'Monoceros Ring' that 
encircles the Milky Way 
disk

- trails of stars being stripped 
from the globular cluster 
Palomar 5

M
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Sagittarius dwarf

87

credit (Rosie Wyse/JHU) 

Discovered in 1994

Covers a large fraction of the sky
but it is on the opposite site
of the bulge so faint

Looping structure

At least 4 globular clusters are 
associated with it
—> important M54, considered the
nucleous of it
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Some standing issues…

88

1) how metal-poor are the most metal-poor stars, how many?

2) how many past accretion events the MW experienced?
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Some standing issues…
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1) how metal-poor are the most metal-poor stars, how many?

2) how many past accretion events the MW experienced?

More observations needed!!!



Chiara Battistini HGSFP winter school

Disk
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Disk

90

• Flattened component (50 kpc across and few kpc thick) 

• Presence of spiral arms and gas 

• Star formation is present nowadays                                 
(~ 3 solar masses per year)

Churchwell et al. (2009)
Rodriguez-Fernandez (2011)
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Disk structure

92

Gilmore & Reid in 1983 introduce the concept of thin and thick disk

The number density of 
stars above the plane 
cannot be represented
with a single exponential 
but with two 
—> thin and thick disk

From studies in the Solar Neighbourhood, these two components have 
different kinematic and chemical properties

Gilmore & Read (1983)

scale height 300 pc

scale height 1350 pc
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Thin and thick disk populations can be divided considering their 
kinematics.
BUT: assuming that their characteristics are the same also outside 
the solar neighbourhood (spiral arms or molecular clouds 
interactions can modify kinematics…)

Disk kinematics

93
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kinematics.
BUT: assuming that their characteristics are the same also outside 
the solar neighbourhood (spiral arms or molecular clouds 
interactions can modify kinematics…)

Disk kinematics
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Bensby et al. (2014)
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Thin and thick disk populations can be divided considering their 
kinematics.
BUT: assuming that their characteristics are the same also outside 
the solar neighbourhood (spiral arms or molecular clouds 
interactions can modify kinematics…)

Disk kinematics

93

Bensby et al. (2014)
Thin

Thick
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Disk abundances

94

Very detailed abundances for sphere of 25 pc around the Sun

Fuhrmann (2011)
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Very detailed abundances for sphere of 25 pc around the Sun

Most of the abundances for the disk are from 1-2 kpc around the Sun
Fuhrmann (2011)



Chiara Battistini HGSFP winter school

Disk abundances

94

Very detailed abundances for sphere of 25 pc around the Sun

Most of the abundances for the disk are from 1-2 kpc around the Sun
Fuhrmann (2011)

Bensby et al. (2014)



Chiara Battistini HGSFP winter school

Other regions of the disk..?

95

Bensby et al. (2011)
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Chemical tagging

96

If disk is formed by stars born in clusters that then got distrupted
—> stars from the same cluster should share the same kinematics
—> it could be possible to trace back their origin (similar to what we 
saw in the halo).

BUT
Not all the groups sharing the same kinematics are from dissolved 
cluster but they are clumped together from interaction with spirals or bar
(for example the Hayades or Hercules streams).
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Bensby et al. (2007a)
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Chemical tagging

98

If disk is formed by stars born in clusters that then got distrupted
—> stars from the same cluster should share the same kinematics
—> it could be possible to trace back their origin (similar to what we 
saw in the halo).

BUT
Not all the groups sharing the same kinematics are from dissolved 
cluster but they are clumped together from interaction with spirals or bar
(for example the Hayades or Hercules streams).

Chemical tagging to determine if stars are coming from the same 
original disrupted cluster.
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Bensby et al. (2007a)
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Some standing issues…
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1) is thin and thick distinction still valid at different radius?

2) how thick disk formed?

3) solar siblings?
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Some standing issues…
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1) is thin and thick distinction still valid at different radius?

2) how thick disk formed?

3) solar siblings?

More observations needed!!!
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Bulge

101
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Bulge

101

~2kpc across



Chiara Battistini HGSFP winter school

Observations of the bulge
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ESO
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Observations of the bulge

102

Dust is transparent to infrared emissions

Extinction map, how much extinction in visible vs IR

ESO
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Bulge structure

103

Three main components:

BOXY BAR: ~300pc vertical scale height, 2-3 kpc radius that 
likely hosts an X-shaped structure visible away from the plane

LONG BAR: thin ~100pc scale height and it lies in the plane, 
—> still not clear if it is part of the main bar or not. 

NUCLEAR BAR or DISK (debated): ~100pc 
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Bulge structure

104

Studies based on gas and stars to investigate the rotation of the bulge
NO “solid body” rotation, but cylindrical rotation like a pseudobulge

Talent, Don, Marenfeld & NOAO/AURA/NSF and the BRAVA Project
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Bulge structure

104

Studies based on gas and stars to investigate the rotation of the bulge
NO “solid body” rotation, but cylindrical rotation like a pseudobulge

Talent, Don, Marenfeld & NOAO/AURA/NSF and the BRAVA Project

RV consistent with bulge formed from a bar that has undergone buckling
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Bulge in other galaxies

105

Classical

M31, NASA

M81, NASA

Pseudobulge

NGC2841, NASA

NGC3040, NASA

NGC128, 2MASSNGC1381, GALEX

NGC4565,NASA
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Bulge formation

106

Martinez-Valpuesta et al. (2006)

Scenario of secular evolution of a massive disk that buckles into a bar

Shen et al. (2010)
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Bulge formation

106

Martinez-Valpuesta et al. (2006)

Scenario of secular evolution of a massive disk that buckles into a bar

Shen et al. (2010)

MW bulge seen with COBE satellite
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Bulge population

107

Dominated by old stars (~10 Gyr), metal-rich. 
Rapid formation because of high [𝛼/Fe] ratios—> ~20 M  /yr over 1Gyr�
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Bulge population

107

chemical composition of bulge is critical to constrain its formation history 
and relationship to other stellar populations in the Galaxy

Dominated by old stars (~10 Gyr), metal-rich. 
Rapid formation because of high [𝛼/Fe] ratios—> ~20 M  /yr over 1Gyr�
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Bulge population

107

chemical composition of bulge is critical to constrain its formation history 
and relationship to other stellar populations in the Galaxy

Dominated by old stars (~10 Gyr), metal-rich. 
Rapid formation because of high [𝛼/Fe] ratios—> ~20 M  /yr over 1Gyr�

Fulbright et al. (2007) Johnson et al. (2012a)
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Bulge population

108

Hint for rapid star formation and fast enrichment is given also from 
heavy metals 

Bulge appears to have had a formation timescale too rapid for the 
AGB stars to affect the chemical evolution with s-process elements
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Bulge population

108

[Fe/H]Johnson & Pilachowski (2010)

Thin diskGiant bulge stars

Hint for rapid star formation and fast enrichment is given also from 
heavy metals 

Bulge appears to have had a formation timescale too rapid for the 
AGB stars to affect the chemical evolution with s-process elements
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Microlensed dwarfs

109

credit RoboNet

Bensby et al. (2013)
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Microlensed dwarfs
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credit RoboNet

Bensby et al. (2013)
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Intermediate age population

110

Bensby et al. (2013)

Population dominated by old stellar ages, but dwarfs point
to a intermediate age component present in the bulge
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Abundances bulge dwarfs
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Bensby et al. (2013)
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Bensby et al. (2013)

BUT…
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Abundances bulge dwarfs

111

Bensby et al. (2013)

BUT…

Ryde et al. (2015), Bensby et al. (2011), (2013)

Which one is right?
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How many bulge populations?
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Ness et al. (2012)
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How many bulge populations?

112

Ness et al. (2012)

A: [Fe/H] ~ +0.15 boxy-bulge component,
concentrated towards the plane
B: [Fe/H] ~ -0.25, vertically thicker boxy-bulge
C: [Fe/H] ~ -0.70, inner thick disk
D: [Fe/H] ~ -1.20, tentatively a metal-poor 
thick disk
E: inner Galactic halo 
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Some standing issues…

113

1)metal-poor bulge has different pattern from thick disk?

2)how much fraction (significant?) of metal-rich pop is young?

3) bulge has distinct chemodynamical subpop based on structure, 
kinematics, ecc.. ?
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1)metal-poor bulge has different pattern from thick disk?

2)how much fraction (significant?) of metal-rich pop is young?

3) bulge has distinct chemodynamical subpop based on structure, 
kinematics, ecc.. ?

More observations needed!!!
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Age of Galactic surveys

114
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Gaia
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 The all-sky survey of about one billion stars
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Gaia

115

 The all-sky survey of about one billion stars

ASTROMETRY

PHOTOMETRY

SPECTROSCOPY

measurements of stellar position, parallax
and proper motion

measurement of magnitudes in 
different bands and epochs

acquisition of radial velocities and 
astrophysical parameters
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How Gaia works

116

Gaia measures parallaxes of stars
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How Gaia works

117

Gaia measures parallaxes of stars

Simulations of the real parallax effect, 150000x exaggerated" (D.Michalik & Stellarium)
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Gaia is spinning slowly to make four complete rotations per day pointing at two 
different portions of the sky (separated by 106.5º).

Meanwhile its spin axis precesses around the Sun with a period of about 64 
days.

The spacecraft spin axis makes an angle of 45º with the Sun direction ensuring 
that the payload is shaded.

 credit L. Lindegren & D. Michalik
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Gaia is spinning slowly to make four complete rotations per day pointing at two 
different portions of the sky (separated by 106.5º).

Meanwhile its spin axis precesses around the Sun with a period of about 64 
days.
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complete coverage of celestial 
sphere in ~6 months
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Gaia is spinning slowly to make four complete rotations per day pointing at two 
different portions of the sky (separated by 106.5º).

Meanwhile its spin axis precesses around the Sun with a period of about 64 
days.

The spacecraft spin axis makes an angle of 45º with the Sun direction ensuring 
that the payload is shaded.

1 year of observations
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 credit D. Michalik & Gaia DPAC

Gaia is spinning slowly to make four complete rotations per day pointing at two 
different portions of the sky (separated by 106.5º).

Meanwhile its spin axis precesses around the Sun with a period of about 64 
days.

The spacecraft spin axis makes an angle of 45º with the Sun direction ensuring 
that the payload is shaded.

1 year of observations

over entire mission average of 
80 observations for each source



Chiara Battistini HGSFP winter school

How Gaia works
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Gaia is providing systematic and repeating observation of star positions in two fields 
of view.

This scanning strategy builds up an interlocking grid of positions, providing absolute 
values of the stellar positions and motions.

Proper motion

Parallax

Good sampling to 
disintangle the two effects

less than 1 yr obs -> Degeneracy! Objects close to detection limit

credit D. Michalik & L. Lindegren
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To have a feeling…
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Alpha Centauri

parallax 0.75” 

~2500 times smaller than angular size of 
Moon (~0.5º) 

1º= 3600” 

4.37 ly, 271000 times Earth-Sun distance 
(150 million km, 1 AU) 

Stars in our Galaxy up to 20000 times 
further away

Akira Fujii / David Malin image
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Gaia’s view
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10% accuracy 
at 10 Kpc

previous mission

modified from ESA
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Gaia’s view
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Mag limit in G # of stars

Micro-arcsecond 
astrometry ~20 > 1000 millions stars

Radial velocities 16 ~150 million stars

Stellar Parameters 12 ~5 millions stars

Elemental abundances 11 ~2 millions stars
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 Gaia                        

2-D 3-D 5-D
Position Parallax Proper

Motions
Ultra-precision,

over years Distance Transverse
velocities
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Gaia’s timeline
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First release Summer 2016
• Positions and G mag for stars with acceptable formal standard 

errors 
• 5 param solution for stars in common with Tycho-2 catalogue

Second release Summer 2017

• 5 parameters astrometic solution single-stars 
• Photometry + errors for sources with verified astrophysical 

parameters 
• Mean RV for sources with no RV variations
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• All available variable-star and non-single-star solutions. 
• Source classifications (probabilities)  
• An exo-planet list. 
• All epoch and transit data for all sources.



Chiara Battistini HGSFP winter school

Gaia’s timeline

125

First release Summer 2016
• Positions and G mag for stars with acceptable formal standard 
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• 5 param solution for stars in common with Tycho-2 catalogue

Second release Summer 2017

• 5 parameters astrometic solution single-stars 
• Photometry + errors for sources with verified astrophysical 

parameters 
• Mean RV for sources with no RV variations

Final release 2022 (TBC)

•  Full astrometric, photometric, and radial-velocity catalogues. 
• All available variable-star and non-single-star solutions. 
• Source classifications (probabilities)  
• An exo-planet list. 
• All epoch and transit data for all sources.

credit B.Holl
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Some images from Gaia
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NGC1818 Cat’s Eye Nebula
Comet 67P/Churyumov–Gerasimenko
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2-D 3-D 5-D
Position Parallax Proper

Motions
Ultra-precision,

over years Distance Transverse
velocities

>12-D6-D

Radial velocity
+ abundances

Ages, histories,
astrophysics

Spectrum Astrophysical
parameters

Spectroscopic Surveys            
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VISTA
telescope 
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Survey strategy
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Galactic surveys
Galactic Halo Low Resolution 
Galactic Halo High Resolution
Galactic Disk-Bulge Low Resolution
Galactic Disk-Bulge High Resolution

Community surveys

Extra Galactic surveys
Galactic Clusters 
AGN
Galaxy Evolution (WAVES)
Cosmology Redshift

Chilean Community

Supposed start: 2021
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Specifications
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from 4MOST webpage
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Goals for Galactic science
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• Determine the 3D Galactic potential and its substructure
• Discern the dynamical structure of the Milky Way disc and measure the 

influence of its bar and spiral arms
• Understand Galactic assembly history through chemo-dynamical 

substructure and abundance pattern labelling
• Find thousands of extremely metal-poor stars to constrain early galaxy 

formation and the nature of the first stellar generations in the Universe.

from 4MOST webpage
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Difficulties
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Very ambitious project:

- since the high number of stars that will be observed there is need of
fast pipeline to analyse the spectra

- define a well designed strategy to optimise observations and to permit 
a parallel evolution of the surveys

- many people involved —> developping good comunication channels
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Conclusion
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Most of the standing questions that we have about the history of the
Milky Way could be answered by observing more stars
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This is a very exciting moment for 
Galactic Archeology!

Most of the standing questions that we have about the history of the
Milky Way could be answered by observing more stars

Next surveys are going to provide all the information that we are
waiting for!



Thank you!


