Rotation and activity in low-mass stars

Ansgar Reiners

Emmy Noether-Programm Deutsche Arschungigeneinschaft DFG

Georg-August-Universität Göttingen

Outline

- I. Introduction: Magnetic activity and why we care about it
- II. Spin-up and spin-down: Rotational evolution of sun-like stars
- III. Magnetic field observations: Explaining rotational evolution at the bottom of the Main Sequence

Magnetic activity

Intensity Magnetogram

Sunspots

Sun-Earth connection

You are here

Steele HILUM

The high-energy Sun and solar variability

2007

171 Å, T≈1.3MK

284 Å, T≈2.0MK

195 Å, T≈1.6MK

304 Å, T≈1.3MK

Activity affects the habitability of exo-planets

Part II

- I. Introduction: Why care about activity?
- II. Spin-up and spin-down: Rotational evolution of sun-like stars

Angular momentum conservation during contraction of the proto- and young star –

before the Main Sequence

Spin-up

On the Main Sequence

convection zone

On the Main Sequence

Expanding wind couples to the magnetic field

On the Main Sequence

Spin-down of sun-like stars

Schematic rotational evolution

Mean rotation velocities in field stars

(i.e., after enough time to calm down)

Fraction of "fast" rotators at the boundary to full convection

from more than 300 targets

(fast: *v*sin*i* ≳3 km/s)

Joshi, Reiners & Goldman

Braking is less efficient in fully convective stars!

Individual rotation velocities in low-mass stars

Individual rotation velocities in low-mass stars

1. Weaker or selective braking at the threshold to full convection

2. Braking is gradually disappearing towards the brown dwarf regime

Hypothesis:

Fully convective M dwarfs cannot generate magnetic fields

Reiners & Basri, 2008

search for magnetic fields in mid- and late-M dwarfs!

Part III

- I. Introduction: Why care about activity?
- II. Spin-up and spin-down: Rotational evolution of sun-like stars
- III. Magnetic field observations: Explaining rotational evolution at the bottom of the Main Sequence

How to find stellar magnetic fields Example: Zeeman effect in Sunspots

Magnetic flux observations in very-low mass stars

At low temperature, atomic lines vanish, and molecules dominate the spectra

Observations of the FeH band

with HIRES/Keck and UVES/VLT

Not exactly optimal efficiency, but it's the only game in town...

Magnetic flux observations in very-low mass stars

Reiners & Basri, 2007

Star	Spectral Type	log (L _X /L _{bol)}	$\log (L_{\rm Ha}/L_{\rm bol})$	<i>Bf</i> [kG]
GJ 1227	M4.5	< -3.85	< -5.0	
GI 729	M3.5e	-3.50		2.0
GI 873	M3.5e	-3.07	-3.70	3.9

Result:

Magnetic fields in very-low mass stars exist!

Hypothesis:

Fully convective M dwarfs cannot generate magnetic fields

What else could be happening at the boundary to full convection?

the field geometry may change - only "small-scale"?

Doppler-maps in polarized light measure the uncancelled flux (Stokes V)

[©] MM Jardine & JF Donati

... and find mid-M dwarfs that do have large-scale fields. But: Only a part of the field is visible to Stokes V.

Field measurements in Stokes I and V

So far, no full field geometry measurement achieved...

Its probably the field geometry that changes at the boundary to full convection.

2. Why is the braking gradually disappearing towards the brown dwarf regime?

Answer: Reduced coupling between magnetic fields and atmosphere because of lower fractional ionization

3000K ~ M5

2300K ~ L0

(COND Model)

Rotation in low mass objects

assuming temperature-dependent wind braking

Reiners & Basri, 2008

Thus: Magnetic fields can probably occur in low-mass stars, brown dwarfs, and planets!

Magnetic field strength may follow a general rule

Summary

- 1. Stars can spin up and down
- 2. Magnetic fields are measured down to spectral type M9
- 3. Braking is different in fully convective stars, the reason is probably a difference in field topology (distributed dynamo vs. interface dynamo)
- 4. Brown dwarf atmospheres are much less ionized and show weak coupling to magnetic fields low activity and negligible braking but possibly high fields
- 5. Potentially unified scaling of magnetic fields in planets and stars

Answer: Reduced coupling between magnetic fields and atmosphere because of lower fractional ionization

Mohanty et al., 2002

Measuring the fields is very difficult!

Johns-Krull & Valenti, 2000

Saturation of the total magnetic flux in stars at rapid rotation

Reiners et al., 2009, ApJ, 692, 538

...back to the Rossby number

most low-mass stars are in the rapid-rotation regime (saturated)

The solar cycle

Rotation in low mass objects

Wind braking law: Mass dependent

Observations of clusters (young) and field (old) stars

Barnes, 2003

Activity and magnetic flux with temperature

Reiners & Basri, 2007

At fixed temperature, Ha-activity scales with magnetic flux! The overall level of activity is decreasing.

Magnetic flux and spectral type

Reiners & Basri, 2007

Magnetic flux ubiquitous in late M-type objects!

Activity and spectral type with magnetic flux

Reiners & Basri, 2007

Yes, there are magnetic fields! At fixed temperature, Ha-activity scales with magnetic flux.

Stars: Rotation-Activity Connection

(F5-M5, different age)

IIIb. Magnetic fields in ultra-cool stars

Need isolated magnetically sensitive and some insensitive lines

Magnetic flux observations in *very-low mass* stars

Trouble: atomic features vanish or get buried in the molecular haze

Johns-Krull & Valenti, 2000

The Sun

2007

2001

magnetogram

optical

The Sun

Differential rotation in the Sun

Evolution of young stars

How to find stellar magnetic fields

At low temperature, atomic lines vanish, and molecules dominate the spectra

How to find stellar magnetic fields Promising tool: molecular FeH absorption

FeH lines are narrow, isolated (!), embedded in a clear continuum, and at the peak of SEDs in ultra-cool objects!