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Galactic stellar mass loss

= 835858838

total mass loss [1072 M, Jyr]

o
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Fig. 1. Total galactic mass loss (solar masses per year) of various classes of stellar
- objects: TP-AGB: tip-AGB objects, SN: supernovae, A-RGB: asymptotic red giant
branch, WR-stars, R, Y5G: red and yellow supergiants, E-AGB: early AGB objects,
MS: main sequence stars, The indicated numbers are collected from the literature
and are inferred {rom a rather inhomogeneous material (Weinzierl 1991). Despite these
inherent uncertainties, they provide a confidential order of magnitude and a clear trend

which is expressed at the percentage of their relative contribution to the total mass
loss,




Two classes of mechanisms for mass 10ss In
evolved stars

Low to intermediate mass stars, current paradigm:

— pulsations levitate material high enough in the atmosphere to form
dust (temperature ~ 1000 K).

— radiative pressure on grains set them in motion and grains drag the
gas away from the star.

Higher mass stars (supergiants):
— Very high luminosity and low surface gravity: outflow.
— Other explanation ?



Questions raised by the scenario

e Stellar surfaces

— Smoothness, spots, how many, time and spatial scales, generated by
convection?

— link with mass-loss ?

e Close stellar environment
— Where do the molecules for and where are they?
— Where and how the does dust form?

e Pulsation
— Is pulsation the only mechanism to invoke?
— What alternative mechanism for red supergiants?



Questions raised by the scenario

» Outflows, Post-AGB stars and Planetary Nebulae
— Connection with early star history?

Planetary nebulae

Egg Nebula - CAL 2688
e & gy e B e

Post-AGB




A (The) supergiant star: Betelgeuse

D — Pupil masking at WHT @ 700nm (continuum)
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Mira stars: R Leo, R Cas & Mira
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Basics of interferometry



Astronomical interferometer

variable delay (B.S)

> Delay line

A
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Interferometer spatial resolution:
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Principle of closure phase




Rules of thumb of interferometry

Fringe contrast (or visibility modulus):
The larger the object, the smaller the visibility (the object gets resolved)

The longer the baseline, the smaller the visibility (resolution = 1/B)

Closure phase:
A centro-symmetric object has a 0 (7) closure phase.
Departure from zero is a detection of an asymmetry.

Phase: 0 () 0 (m) #0 (m) 0 ()



Example: measurement of star diameter with visibilities

L 'S
Uniform disk: ’Jéﬂs) = P(5) with g the disk angular diameter
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(visibility) Measurements of quiet giant stars



Quirrenbach et al. (1996, Mark I11)
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Limb-darkening measurements provide first order
infos on the atmosphere structure and are well
explained by atmospheric static models.
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The multi-1 study of g Sge (MO I111)

(Wittkowski et al. 2006)
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The MOLsphere™* of red supergiants

*MOLsphere was coined by Tsuji who proposed its existence to explain IR spectra
of u Cep and Betelgeuse.



Molecular layer model: the MOLsphere
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Observations of Betelgeuse with MIDI
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Proposal for a scenario for dust formation:

- Al,O4 can condensate in the warm region of the MOLsphere (1700 K) where it is detected.

- Si0O is adsorbed on Al, O grains in the MOLsphere and benefits from radiation pressure on
solid grains.

- Silicate grains condensate at larger distance and cover Al,O, grains which are no longer
detected.

Issue to solve: lift the gas up to the MOLsphere without a steady pulsation regime.



Mira diameter
(Labeyrie et al. 1977)
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Scholz & Takeda (1987)
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General sketch for O-rich Mira stars

dust shell inner radius

4 R.
3 R
y 2 R.

SiO masers

1 R.



General sketch for O-rich Mira stars

dust shell inner radius
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A new tool to study late-type stars:
Interferometric images



(u,v) coverage and Image reconstruction
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QuickTime™ and a
decompressor
are needed to see this picture.

Inverting the Zernike - van Cittert theorem
IS not an easy task in these conditions

\ ¢ [MBw O
0 1(S)expe-2ipS.—d*S

L[]
V (B) — source : e mz u_|_|u
0 1(S)d-S
MM source

+(3)



Reconstructing images from a sparse
(u,v) coverage

&Vz M ® 8123
F= _Ga—(s) —% "+ regularization

ﬂﬂ

: %
N - p Q eV 2 € Si g closure phases

= c’ + m~ penaltyfunction

The penalty function is a regularization term which adds constraints to
reconstruct the image (positivity, smoothness, limited extension, ...)

The p can be adjusted to force the image to be mostly
constrained by the or conversely to force the image to be mostly
constrained by the data.



e 3 movable 45 cm siderostats
 Minimum baseline: 5m

e Maximum baseline: 38m

e Resolution in K band: 12 mas

 Passed away in July 2006 !

Mont Hopkins

Arizona

IOTA

Infrared
and Optical
Telescope Array




QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a

Comparison of center-to-limb variations

parametric
e MASARD...

are needed to see this picture.

MIRA

TIFF (Uncompressed) decompressor

are needed to see this picture.




Lep at VLTI

QuickTime™ and a
decompressor
are needed to see this picture.

Le Bouquin et al. (2009)




Lep at VL

QuickTime™ and a
decompressor
are needed to see this picture.

Le Bouquin et al. (2009)




QuickTime™ and a
decompressor
are needed to see this picture.

Convective motions at the

surface of Betelgeuse
(Ohnaka et al. 2009)

aeresiriostste

Patchy
surface
model

Date of observation: January 2008

Large upwelling spot (< hemisphere, Q=60°)
10-15 km/s velocity

Detected in the blue and red wings of CO lines
in K band with AMBER.



Imaging the surface of Betelgeuse with IOTA In

the H band (Haubois et al. A&A 508, 923, 2009)
October 2005 observations

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
deompestor © b e R b “decompressor
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

MIRA algorithm WISARD algorithm PSF

Assuming blackbody emission for spot T;:

T. =3600K
Topor = 4125 K

It is compatible in size (~ 10 mas) and temperature
with a convective cell.

T, is unresolved and is close to the pole. Location of the polar cap from HST imaging

Uitenbroek et al. (1998)



Comparison of the Betelgeuse H band data with
convection models (Chiavassa et al., submitted to A&A)

Hydrodynamical simulations Comparison to V?2
of convection (CO°BOLD+OPTIM3D)

decompressor.




Comparison of the Betelgeuse H band data with
convection models (Chiavassa et al., submitted to A&A)

Hydrodynamical
model of convection

Comparison to closure phases




Large plumes with NACO (kenveliaet al., 2009, A&A 504, 115)

The asymmetric close environment (6R*)
may be explained by mass-loss triggered by
convection.

CN is detected in absorption in the
environment.

The Southwestern plume may be linked to
either convection or to stellar rotation.

QuickTime™ and a
decompressor
are needed to see this picture.
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1994 HST UV image

JHK NACO images in burst mode (January 2009)



Detection of a magnetic field with NARVAL
(Pic du Midi)

QuickTime™ and a

decompressor.
re needed to see this picture.

QuickTime™ and a
decompressor.
are needed to see this picture.

(Auriere et al., 2010, submitted to A&A L)

Detection of magnetic field on Betelgeuse
(Zeeman splitting of lines).

Average magnetic field over the star

surface:
05G<B<1.5

Possibly of convective origin -> follow the
evolution of the magnetic field.



Conclusions for Betelgeuse

Evidences of direct detection of convection at the surface of the star.

Convection cells may be connected with plumes imaged up to a few
stellar radii that contain at least one molecule, CN.

There is a consistent scenario to explain dust formation and mass loss
thanks to the detection of the MOLsphere.

Convection is a strong candidate to provide energy to levitate gas up to
the MOLsphere. The detection of a magnetic field is a hint that this
phenomenon may play a role.

Are we touching the goal?



Mira in H band (Perrin et al., in preparation)
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Mira in H band (Perrin et al., in preparation)

+2.83e-03
K band sizes +2.556-03
+2.278-03
+1.98e-03

+1.70e-03

+1.42e-03 QuickTime™ and a
decompressor
+1.13e-03 are needed to see this picture.
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Image in the H band (I0TA) Perrin et al. (2004)
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Point Spread Function
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Comparison to the star + shell model
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Mira bi-polar outflow
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Average profile

Original image Azimuthally averaged image



Subtracting the average radial profile

. -




Convection

Grey intensity Log of density

600-400-200 0 200 400 600 600-400-200 O 200 400 600
(Freytag & Hdofner, 2008, A&A 483, 571)

Snapshot of a hydrodynamical model of an AGB star incorporating both
convection and pulsation.



Looking for the hidden behind the scene
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Tentative 1deas

The Mira envelope contains regions of high density, making dark spots,
which are as important or more important to the image structure than
“bright” spots.

The radial brightness profiles show the size of the star and envelope, and
the density of the envelope.

The gaussian profile may be the minimum profile when the star is fully
covered by dark spots whereas the maximum profile is for an unspotty
star.

The high density spots may be connected to nucleation sites for dust.



Dust shells around Mira

2005
H

ISI 11.15 um imaging data (Chandler et al. 2007)

2003 2004 2005

ssssssssssssssssssssssss

S5SR* 20R*

b

Shells are created and propagate outwards
Creation rate is not necessarily correlated to stellar pulsation Monnier et al. (2000, 1SI)



Fluctuations of star maximum

Oct 10, 2005 = JD2453654
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Could the amplitude of maxima be correlated with the number of dark spots ?



|deas to study

Dark spots could be the result of convective uplift of material.

The variation in the number of dark spots could explain the cycle-to-cycle
variation in the maximum brightness.

The North-South elongation of the Mira brightness could be associated
with the bipolar outflow.

Could there be priviledged locations of spots because of magnetic fields
that could induce a steady elongation ?

Dark regions could be areas of dust formation and produce asymmetric
mass loss.



Conclusions



Conclusions (1/2)

Molecular environments are measured (MOLsphere)
— (Gaseous reservoir at 2-2.5 R. for Miras
at ~ 1.4 R. for red supergiants
— List of constituents: TiO (visible), CO, H,O, OH, Al,O,, SIO

A scenario has been proposed for dust formation in supergiants that may
apply to Mira stars:

— Condensation of alumina in the molecular shell first with adsorption of
SIO;
— Silicate dust forms when temperature drops below 1000 K.

Convection may bring the missing momentum to lift up material in the
atmosphere of red supergiants



Conclusions (2/2)

Fundamental mode pulsation cannot produce asymmetries.

Asymmetries are a possible signature of convection (an alternative to binarity)

Convective cells have been detected at the surface of Betelgeuse and the
detected plumes may have a convective origin (building of the MOLsphere).

Convective features possibly detected at the surface of ¢ Cyg (shallow shell)
and Mira (thicker shell).

The asymmetry of Mira is interpreted to be the cause of a locally high density In
the MOLsphere.

Interferometric imaging is beginning to help a lot



Origin ()f the Spot Thermal emission from spot
brightness
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Stellar radiation transmitted
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Could the companion provide an explanation ?

1.65 um

Gravitational darkening is excluded (by 4
orders of magnitude).
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