Continually Evolving: Our Understanding of the Galactic center

Rainer Schödel, IAA-CSIC JHAC, Heidelberg, 6 July 2010 I. The massive black hole Sagittarius A*

II. The nuclear stellar cluster of the Milky Way

III. Star Formation at the Galactic Center

IV. The missing stellar cusp around Sagittarius A*

V. Kinematics and Mass in the Central Parsec

The massive black hole Sagittarius A*

Orbits around Sagittarius A*

Orbits around Sagittarius A*

Orbits around Sagittarius A*

50 light days

e.g. Eckart & Genzel (1996); Ghez et al. (1998, 2003,2008); Genzel et al. (2000); Eckart et al. (2002); Schödel et al. (2002, 2003); Reid et al. (2004); Eisenhauer et al. (2003, 2005); Gillessen et al. (2009); Yelda et al. (2010)

I 4 light days

MPE/ESO

UCLA/Keck

e.g. Eckart & Genzel (1996); Ghez et al. (1998, 2003,2008); Genzel et al. (2000); Eckart et al. (2002); Schödel et al. (2002, 2003); Reid et al. (2004); Eisenhauer et al. (2003, 2005); Gillessen et al. (2009); Yelda et al. (2010)

I 4 light days

MPE/ESO

UCLA/Keck

e.g. Eckart & Genzel (1996); Ghez et al. (1998, 2003,2008); Genzel et al. (2000); Eckart et al. (2002); Schödel et al. (2002, 2003); Reid et al. (2004); Eisenhauer et al. (2003, 2005); Gillessen et al. (2009); Yelda et al. (2010)

Some numbers...

- Distance of Sagittarius A*:
 - ▶ 8.0 ± 0.3 kpc (Yelda, Ghez+ 2010)
 - 8.3 ± 0.3 kpc (Gillessen+ 2009)
 - 8.1 \pm 0.3 (0.15) kpc (average of 2006-2009 measurements; Schödel+ 2010)
- Mass of Sagittarius A* from stellar dynamics:
 4.1 ± 0.3×10⁶ M⊙ (Yelda, Ghez+ 2010)
 4.3 ± 0.3 × 10⁶ M⊙ (Gillessen et al., 2009)

 \Rightarrow angular size of $R_{Schwarzschild}\approx$ 10 μas (with M87 largest one on the sky)

<u>compare:</u>

- 8m telescope, NIR: FWHM ~60 mas, astrometric accuracy ~1 mas
- \bullet Resolution element inter-continental VLBI 345GHz ~20 μas

Is Sagittarius A* at rest?

Sgr A* should show some reflex motion because of its interaction with the (much lighter) stars in its surroundings.

⇒ "Brownian Motion"

Is Sagittarius A* at rest?

Is Sagittarius A* at rest?

Detectable proper motion of Sgr A* relative to a quasar is consistent with its expected apparent motion because of the Sun's Galactic orbit.

$$\Rightarrow$$
 > 4×10⁵ M_☉

must be **directly** related to the radio source Sgr A*

 \Rightarrow Sgr A* must be a black hole.

VLBI observations of Sgr A*

Observed size larger than expected apparent size of event horizon. \Rightarrow emission probably not centered on Sgr A* (relativistic flow, jet)

VLBI observations of Sgr A*

Observed size larger than expected apparent size of event horizon. \Rightarrow emission probably not centered on Sgr A* (relativistic flow, jet)

Available material from stellar winds for accretion near Bondi radius ~ 10^{-5} - 10^{-6} M $_{\odot}$ yr⁻¹ (e.g., Baganoff + 2003; Quataert 2004)

Actual accretion rate $<10^{-7} M_{\odot} yr^{-1}$ (Marone+ 2009)

 \Rightarrow outflow must exist

Outflow also predicted by theoretical models (e.g., Blandford & Begelman, 1999; Markoff & Falcke, 2003; Yuan 2006; Shcherbakov & Baganoff, 2010) and required to explain radio SED of Sgr A*

Sgr A* : Outflow/Jet

The nuclear stellar cluster of the Milky Way

Nuclear Star Clusters (NSCs)

Nuclear Star Clusters (NSCs)

van der Marel et al. (2007), image from the observations of Bresolin et a. (2005)

Nuclear Star Clusters (NSCs)

NSCs are detected *unambiguously* in 50%-75% of spiral, spheroids ("dwarf ellipticals"), and S0 galaxies. Their actual rate of occurrence in these galaxies may be close to 100%.

NSCs appear to be absent in elliptical galaxies (i.e. products of major mergers: coreless and extra-light ellipticals).

see also, e.g., Phillips+ 1996; Carollo+ 1998; Matthews+ 1999; Böker+ 2002, 2004; Balcells+ 2003; Ferrarese+ 2006; Kormendy+ 2009

Nuclear star clusters

- Half-light radii typically 2-5 pc
- Masses of 10⁶ 10⁷ M_☉
- **Complex star formation histories**: evidence for frequent and repetitive star formation episodes, most recent generation often younger than 10⁸ yr
- NSCs may obey similar scaling relationships with properties of host galaxies as do massive black holes

see, e.g., review by T. Böker (2008)

First observations of the NSC

2.2 µm observations from Becklin & Neugebauer 1968:

0.5 × 0.5mm PbS cell IR photometer on 200 inch telescope on Mt. Palomar

- dominant extended, elongated source of 3'- 5'FWHM
- surface brightness proportional R^{-0.8}
- \bullet dense stellar cluster with $\rho \! \propto \! r^{\! 1.8}$
- density in central parsec 10⁷ times the one in the solar neighborhood
- mass in central pc $\sim 3 \times 10^{6} M_{\odot}$

Diameter (pc)	Mean Intrinsic 2 2-µ Surface Brightness (10 ⁻¹⁸ W m ⁻² Hz ⁻¹ sterad ⁻¹)	Intrinsic Luminosity $(10^6 L\odot)^*$	Mass (106 M⊙)†
	78 45 21	1 2 7	3 6 20
10 20 40 . 60	$\begin{array}{c} 12\\ 7\\ 4\\ 3\end{array}$	35 80 130	45 100 230 370

* $L\odot = 4 \times 10^{26}$ watts. $\dagger M\odot = 2 \times 10^{30}$ kg

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

A Word about Extinction...

see also: Nishiyama+ (2008, 2009); Gosling+ (2009); Stead & Hoare (2009)

Studies on stellar number and/or light surface density of NSC find $\rho(r) \propto r^{-1.5...-2}$ at distances $r \geq 1 \rho c$ (~25") e.g., Becklin & Neugebauer, 1968 - $\rho \propto r^{-1.8}$ (bulge reference field subtracted); Catchpole+, 1990; Eckart+, 1993 - $\rho \propto r^{-1.8}$ (SHARP source counts, inner 15"); Genzel+, 1996 - $\rho \propto r^{-1.8}$ (inner 20", late-type stars); Haller+ 1996; Genzel+, 2003; Schoedel+, 2007 - $\rho \propto r^{-1.75}$ (ISAAC+NACO, no bulge correction); Graham & Spitler, 2009 - $\rho \propto r^{-2.0...2,7}$ (2MASS light density, bulge correction); Oh

+, 2009 - $\rho \propto r^{-1.5}$ (various models and data)

Studies on stellar number and/or light surface density of NSC find $\rho(r) \propto r^{-1.5...-2}$ at distances $r \geq 1 \rho c$ (~25") e.g., Becklin & Neugebauer, 1968 - $\rho \propto r^{-1.8}$ (bulge reference field subtracted); Catchpole+, 1990; Eckart+, 1993 - $\rho \propto r^{-1.8}$ (SHARP source counts, inner 15"); Genzel+, 1996 - $\rho \propto r^{-1.8}$ (inner 20", late-type stars); Haller+ 1996; Genzel+, 2003; Schoedel+, 2007 - $\rho \propto r^{-1.75}$ (ISAAC+NACO, no bulge correction); Graham & Spitler, 2009 - $\rho \propto r^{-2.0...2,7}$ (2MASS light density, bulge correction); Oh

+, 2009 - $\rho \propto r^{-1.5}$ (various models and data)

Rotation of the NSC

Schödel, Merritt, & Eckart (2009)

Rotation of the NSC

Overall properties of the Milky Way's NSC

Shape:

- both King and Sérsic models have been used
- spherically symmetric (probably slightly flattened)?
- ρ (light, number density) \propto r⁻² at r > 0.5-1 pc

Star formation:

- significant overabundance of supergiants and bright giants as well as presence of young massive stars
- starburst-like activity in the central I pc about 4-6 Myr ago

<u>Mass</u>: $3 \pm 1.5 \times 10^7 M_{\odot}$ (Launhardt+ 2002) <u>Size</u>: half light radius of 3-5 pc (large uncertainties) <u>Density</u>: $\sim 1.5 \times 10^5 M_{\odot} pc^3$ at r=1 pc, $\sim 10^7 M_{\odot} pc^3$ at r=0.1 pc<u>Rotation</u>: The NSC rotates.

Overall properties of the Milky Way's NSC

Shape:

- In general, the properties of MW NSC are similar to extragalactic ones.
- Difficult to determine exact parameters of ^{as}
 MW NSC because of strong and variable extinction.

<u>Size</u>: half light radius of 3-5 pc (large uncertainties) <u>Density</u>: $\sim 1.5 \times 10^5 M_{\odot} pc^{-3}$ at r=1 pc, $\sim 10^7 M_{\odot} pc^{-3}$ at r=0.1 pc<u>Rotation</u>: The NSC rotates.

Star Formation at the Galactic Center

WN9 & Ofpe stars in central parsec

WN9 & Ofpe stars in central parsec

Flux

Figure 4. Low-dispersion spectrum of the AHH star, uncorrected for reddening.

imaging with SHARP/NTT (Eckart et al., 1995)

The recent star burst in the GC

IF-spectroscopy with SINFONI/VLT

The recent star burst in the GC

IF-spectroscopy with SINFONI/VLT

see also, e.g., Genzel et al. (2000), Levin & Beloborodov (2003), Paumard et al. (2006), Tanner et al. (2006);

see also, e.g., Genzel et al. (2000), Levin & Beloborodov (2003), Paumard et al. (2006), Tanner et al. (2006);

see also, e.g., Genzel et al. (2000), Levin & Beloborodov (2003), Paumard et al. (2006), Tanner et al. (2006);

see also Hobbs & Nayakshin (2009)

> 75% of the K=14-16 stars within ~1"of Sgr A* are B-dwarfs. They cannot have formed there nor migrated there via dynamical friction from larger distances during their lifetime ($\leq 10^8$ yr).

Origin of S-stars

Close encounters between binary stars and massive BH

 \rightarrow

one stars remains tightly bound, the other one is ejected as hypervelocity star (Hills 1988)

Origin of S-stars

one stars remains tightly bound, the other one is ejected as hypervelocity star (Hills 1988)

Origin of S-stars

Hypervelocity stars found in the Galactic halo can be traced back to the Galactic center. They are early A/late B dwarfs.

90

120

traveľ 60 time (Myr)

The Hills-mechanism is a probable hypothesis for the creation of the S-stars.

Close encounters between binary stars and massive BH → one stars remains tightly bound, the

other one is ejected as hypervelocity star (Hills 1988)

700

The missing stellar cusp Sagittarius A*?

Formation of a stellar cusp

Stellar surface number density

Stellar surface number density

Classifying stars at the GC: Broad-band

main problems:

- high and variable extinction
- only H,K,L observations (narrow range of stellar colors)
- FOV of spectroscopy very small

see Schödel et al. (2010, A&A)

Classifying stars at the GC: Broad-band

see Schödel et al. (2010, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

n(r) of old stars $\neq n(r)$ of young stars

n(r) of old stars $\neq n(r)$ of young stars

Spectroscopic studies of late-type stars at the GC

Spectroscopic studies of late-type stars at the GC

Spectroscopic studies of late-type stars at the GC

Decreasing density of old stars toward Sgr A*.

 $\rightarrow \gamma < 1.0$ with >99% probability (Do et al., 2009)

→ There is no observable cusp, there may be even a hole.

Where is the stellar cusp at the GC?

<u>Destroyed</u>: e.g., by infall of IMBH up to a few 10⁹ yr ago

• Not yet formed:

necessary time scale may be longer than ~10¹⁰ yr (Merritt 2009)

• Invisible:

giants could be destroyed by collisions with MS stars and BHs in dense cluster center; however, mechanism probably not effective enough (Dale+ 2009)

• Are our assumptions correct?

Continuous star formation, cluster not old enough?, cluster embedded in nuclear bulge, fraction of disrupted star accreted onto BH?, etc.

Kinematics and Mass in the Central Parsec

Kinematics

6000 proper motions within 1 pc of Sgr A*, data from Schoedel+ (2009) publicly available.

Based on IO images taken between 2002 and 2008.

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Kinematics

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Kinematics

Sagittarius A*

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Enclosed mass at R < 1 pc

- **Extended mass** detected for the first time **unambiguously** from stellar dynamics in central parsec.
- Mass distribution hardly constrained: Models allow even a <u>decrease</u> toward Sgr A*.
- If mass density rises toward the black hole, then $M_{\star}(r < Ipc) > 0.5 \times 10^6 M_{\odot}$
- •If M/L = const then $M_{\star}(r < Ipc) \approx 1.5 \times 10^{6} M_{\odot}$
- <u>Major sources of uncertainty:</u>

cluster structure on large scales, symmetry and isotropy of cluster, mass *distribution* in central parsec

see Schödel, Merritt, & Eckart (2009, A&A) see also, but note differences with, Trippe+ 2008

What do we observe at the GC?

Mean mass [M_o]

What do we observe at the GC?

A Look into the Future...

...in the near-infrared...

...in the near-infrared...

Trippe et al. simulated field for E-ELT/MICADO (1" \times 1")

VLT (8 m) Trippe+, (MNRAS, in press)

E-ELT (42 m)

...in the near-infrared...

... in the near-infrared...

http://www.astro.ucla.edu/~ghezgroup/gc/pictures/Future_GCorbits.shtml

