Rare Isotopes in Cosmic Explosions and Accelerators on Earth Hendrik Schatz Michigan State University Joint Institute for Nuclear Astrophysics www.jinaweb.org

Find more such stars ?

- Ongoing Surveys (and analysis of past) sample millions
- of stars and will drastically increase number
- → Will obtain a fossil record of chemical evolution

But what is the r-process site?

Supernovae: v-driven wind?

(not enough neutrons, p-rich environment?) Fall back? Jets? Shocked O-Ne cores?

Needed: Data

- precision observations of abundance patterns produced by the r-process in nature
- nuclear experimental data (plus theory) for all models

E0102-72.3

Gamma ray burst accretion disks ? (too rare)

Neutron star mergers ? (to slow to fit GCE? Ejected material?)

"... our current simulation is far from reproducing the solar *r*-process signature. [...] One reason for this could well be the uncertainties in the β -decay rates." (Fryer et al. 2006)

A possible pathway of the r-process

Nucleosynthesis in the r-process

Compare calculated results with many precision abundance observations ?
 → Masses, half-lives, and n-emission of very unstable, exotic nuclei need to be known
 → Need experimental data and nuclear theory (for addtl. data and astro corr.)

National Superconducting Cyclotron Laboratory

MICHIGAN STATE

A national user facility for research and education in:

- Nuclear science
 Astro-nuclear physics
- Accelerator physicsSocietal applications
- ~50 Undergraduate students ~71 Graduate students ~19 Postdocs ~33 Faculty ~170 Staff
- The Coupled Cyclotron Facility user group has 700 registered users

The NSCL is located on the campus of Michigan State University

Funded by the National Science Foundation (NSF)

NSCL Coupled Cyclotron Facility since 2001

Mainz - Notre Dame - NSCL collaboration

NERO efficiency: 30-38% for <2 MeV

Particle Identification

Some results from the Mainz/MSU/Notre Dame campaign

Result for half-life: 110 ⁺¹⁰⁰-60 ms

Compare to theoretical estimate used:470 ms

Classical model fit (3 parameters describing $n_n(t)$ and T)

 10^{2} previous data Solar r-process this work large ⁷⁸Ni half-life 10 abundance 10 10^{0} 10^{-2} 180 80 100 120 140 160 200 mass number

Together with precision mass measurements of ⁸⁰Zn, ⁸¹Zn (Baruah et al. 2009)

FRIB project on MSU Campus

Advancing Knowledge. Transforming Lives.

- Driver linac with 400 kW and greater than 200 MeV/u for all ions
- Ions of all elements from protons to uranium accelerated

D.A. Smith, M. Muno, A.M. Levine, R. Remillard, H. Bradt 2002 (RXTE All Sky Monitor)

• extract quantitative system characteristics (accretion rate and composition, NS properties)

• search for signatures beyond simple 1D model

Multi-peaked burst rises?

First sensitivity study for full 1D burst model from Heger (Cyburt, Amthor, et al.)

(see also post-processing study by Parikh et al. 2008)

n-removal related to astrophysical ³²Cl+p \rightarrow ³³Ar+ γ rate at NSCL

n-removal at NSCL

Other examples: Yoneda et al. 2006: ²⁴Si; Amthor et al.: ³⁷Ca; Galaviz et al. : ³⁰S; Chen et al.: ²⁶Si

- first and dominant step in improving rate uncertainties
- further improvements IF NEEDED
 - better shell model
 - transfer reactions for p-widths, mirror lifetime for g-widths
 - direct measurement of rate with ³²Cl beam on p target

Joint Institute for Nuclear Astrophysics (JINA) a NSF Physics Frontiers Center – www.jinaweb.org

- Interdiciplinary approach to nuclear astrophysics research
- JINA schools, workshops, and conferences
- Virtual Journal for Nuclear Astrophysics
- Continuously updated public data base for reaction rates (reaclib)

Nuclear Physics Experiments

Astrophysical Models

JINA

Core institutions:

- Notre Dame
- MSU
- U. of Chicago

Astronomical Observations

Associated:

- Arizona State University
- Argonne Natl. Lab
- Princeton
- University of Minnesota
- University of Victoria
- EMMI (GSI)
- LANL
- UC Berkeley
- Universe Cluster Munich
- Western Michigan

Summary

- Rare isotopes play a critical role in the cosmos
 - as the progenitors of many of the stable isotopes found in nature
 - as energy source in thermonuclear explosions (X-ray bursts)
 - in the crusts of neutron stars
- We are now entering an era where, enabled by new machines such as FRIB there is hope to study most of the relevant rare isotopes (others: ISAC-TRIUMF, FAIR, RIKEN-RIBF, SPIRAL-II, ...)
- In nuclear astrophysics, interdisciplinary approaches are necessary Field is getting into shape with Joint Institute for Nuclear Astrophysics, EMMI, Munich Universe Cluster, ...
- In nuclear astrophysics: strong interplay with reactions on stable isotopes also need stable beam accelerators, DUSEL, e-beams, γ -beams, ν -beams ...

The Joint Institute for Nuclear Astrophysics

Collaboration for NSCL r-process experiments

P. Hosmer,^{1,2} A. Aprahamian,^{3,4} O. Arndt,⁵ R. R. C. Clement,^{1,6} A. Estrade,^{1,2} K.-L. Kratz,^{5,7} S. N. Liddick,^{1,8} A. F. Lisetskiy,⁹ P. F. Mantica,^{1,8} P. Möller,¹⁰ W. F. Mueller,¹ F. Montes,^{1,4} A.C. Morton,^{1,11} M. Ouellette,^{1,2} E. Pellegrini,^{1,2} J. Pereira,^{1,4} B. Pfeiffer,⁵ M. Quinn,^{3,4} P. Reeder,¹² P. Santi,^{1,13} H. Schatz,^{1,2,4} M. Steiner,¹ A. Stolz,¹ B. E. Tomlin,^{1,8} W. B. Walters,¹⁴ and A. Wöhr³ ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA ²Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ³Dept. of Physics, University of Notre Dame, Notre Dame, IN 46556-5670, USA ⁴ Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA ⁵Institut für Kernchemie, Universität Mainz, Fritz-Strassmann Weg 2, D-55128 Mainz, Germany ⁶Current affiliation: Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, CA 94550, USA ⁷HGF Virtuelles Institut für Kernstruktur und Nukleare Astrophysik ⁸Dept. of Chemistry, Michigan State University, East Lansing, MI 48824, USA ⁹Department of Physics, University of Arizona, Tucson, AZ 85721, USA ¹⁰Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ¹¹Current affiliation: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 1R9 Canada ¹²Pacific Northwest National Laboratory, MS P8-50, P.O. Box 999, Richland, WA 99352, USA ¹³Current affiliation: Los Alamos National Laboratory, TA 35 Bldg. 2 Room C-160, USA ¹⁴Dept. of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

But: sun formed ~10 billion years after big bang: many stars contributed to elements

 \rightarrow This is an endpoint of a chemical evolution process

10⁻²

 \rightarrow This could be an accidental combination of many different patterns

Element number (Z)

A

JINA

Neutron star heat tomography

Cooling crust probes increasing depth (Brown and Cumming 2009)

Characteristic heat distribution in crust depends sensitively on compositon of burst ashes (Gupta 2007)

The r-process at A=80

> Unique region where
 main nuclear physics
 for the r-process is now
 experimentally constrained

Network calculation: when is ⁸⁰Zn a waiting point?

Baruah et al. 2008

Results (Hosmer et al. 2005, Hosmer et al. to be published)

^{67,69}Cu: B. Zeidman et al. (1978). ⁷¹Cu: R. Grzywacz et al. (1998) ^{69,71,73}Cu: S. Franchoo et al., (1998, 2001).