

Olaf Reimer Leopold-Franzens-Universität Innsbruck & KIPAC Stanford FERMIS FIRST YEAR IN ORBIT OURD FIRST YEAR IN ORBIT OURD FIRST YEAR IN ORBIT

Fermi LAT Collaboration

- France
 - IN2P3, CEA/Saclay
- Italy

NASA

- INFN, ASI, INAF
- Japan
 - Hiroshima University
 - ISAS/JAXA
 - RIKEN
 - Tokyo Institute of Technology
 - Sweden
 - Royal Institute of Technology (KTH)
 - Stockholm University
 - **United States**
 - Stanford University (SLAC and HEPL/Physics)
 - University of California at Santa Cruz
 - Goddard Space Flight Center
 - Naval Research Laboratory
 - Sonoma State University
 - Ohio State University
 - University of Washington

~390 Members (112 Full Members, 95 Affiliated Scientists, 68 Postdocs, and 105 Graduate Students)

Fermi LAT science objectives

Thousands of AGN

blazars and radiogal = $f(\theta,z)$ evolution z < 5 Sag A*

> **10-50 GRB/year** GeV afterglow spectra to high energy

> > **γ-ray binaries** Pulsar winds μ-quasar jets

Possibilities

starburst galaxies galaxy clusters measure EBL unIDs

Dark Matter neutralino lines sub-halo clumps; e⁺+ e⁻ spectrum

Cosmic rays and molecular clouds acceleration in Supernova remnants OB associations propagation (Milky Way, M31, LMC, SMC) Interstellar mass tracers in galaxies

Pulsars

emission from radio and X-ray pulsars blind searches for new Gemingas magnetospheric physics pulsar wind nebulae

Fermi LAT technichal realization

Single Photon Angular Resolution 3.5° @ 100 MeV 0.15° @ 10 GeV

Converter/Tracker

Anticoincidence Detector Wide Energy Range 20 MeV ... ~300 GeV

> Low dead time < 100 μs/event

Large Effective Area

 $(A_{\rm eff})_{\rm peak} > 8,000 \, {\rm cm}^2$

Wide FoV

(~ 2.4 sr)

Point Source Sensitivity < 3 x 10⁻⁹ ph cm⁻²s⁻¹

Source Localization 0.3' – 1'

Hodoscopic Calorimeter

Good Energy Resolution △E/E ~ 10%; 100 MeV – 10 GeV < 20%; 10 GeV – 300 GeV

Fermi Large Area Telescope A pair conversion telescope

When Fermi LAT was still GLAST...

Diameter sets transverse size

Throw capacity to LEO sets depth of Calorimeter

Rocket payload fairing

Fermi Gamma-Ray Space Telescope

June 11, 2008 12:05 PM EDT; Cape Canaveral , FL

Scanning mode

> Autonomous repointing

My only slide on the history of satellite-based high-energy γ -ray astronomy

- By now, Fermi has outperformed any previous (COS-B, EGRET), or operating (AGILE) GeV γ-ray telescope
- This statement relates to simple exposure and number of recorded γ-ray events but independently valid for instrument characteristics like psf, dE/E, A_{eff}, τ_d, Δcalib

The Fermi sky after 1 year

Dec 2009: 1st year source catalog takes shape

> 1000 sources after Fermi 1st year operations

Diffuse Continuum Gamma Radiation

- Cosmic Rays present throughout our Galaxy
- Magnetic fields (synchrotron radio maps)
- Interstellar radiation fields (CMB, IR, OPT/UV)

Cosmic Ray Interactions with the Moon surface

γ -ray spectrum characteristic for *moon limb or center interactions*

E > 100 MeV 0.2º/bin

CR

CR

 $f_{>100 \text{ MeV}} = (1.06 \quad 0.2) \times 10^{-6} \text{ ph cm}^{-2} \text{s}^{-1}$

EGRET GeV excess is not seen in $10^{\circ} \le |b| \le 20^{\circ}$, thus not an universal feature at the gamma-ray sky

 \rightarrow standard CR interaction models adequate (which do justice to locally measured CR abundances, CR sec/prim ratios, long/lat distr.) \rightarrow Fermi/LAT errors are systematics dominated, estimated to ~10%

So we're back to common CR particle interaction physics!

- 1. Hard nucleon injection spectrum
- 2. Hard electron injection spectrum
- 3. Atypical local p and e spectra affects diffuse g-ray sky only mildly
- 4. Imperfect knowledge of $\sigma(pp \rightarrow \pi^{\theta})$
- 5. Unresolved GeV γ ray sources
- 6. Instrumental effect charged particle background f(E)self-veto due to monolithic cal $\rightarrow A$
- 7. Manifestation of dark matter

Gamma-ray instruments hunting in CR territory: the *Fermi e*⁺+*e*⁻ spectrum

• events for $e^+ e^-$ analysis required to fail ACD vetoes for selecting γ events; resulting γ contamination < 1%

• further cuts distinguish EM and hadron events; rejection 1:10³ up to 200 GeV; ~1:10⁴ at 1 TeV

 energy reconstruction aided by shower imaging capability of calorimeter

No prominent spectral features between 20 GeV and 1 TeV... *... but Fermi* and *PAMELA* data might require a new high-energy positron source

Nearby conventional astrophysical sources (e.g. pulsars) injecting required amounts of e⁺ and e⁻, injected spectrum & efficiency are very uncertain
 even standard TeV electron propagation can have many stochastic realizations
 Dark matter? (annihilation → boost factors?; decay → prominent feature at mχ?)

Gamma-ray instruments hunting in CR territory: the H.E.S.S. e⁺+e⁻ spectrum

H.E.S.S. has measured cosmic-ray electrons between 340 GeV and 5 TeV

Systematic uncertainties include atmospheric variations, uncertainties in hadronic interaction models and H.E.S.S. energy scale uncertainty

FERMI: **Г** ~ 3.05

H.E.S.S.: Smooth spectrum that steepens at 0.9 TeV

$$\Gamma_1 = 3.0 \quad 0.1_{stat.} \quad 0.3_{syst.}$$

 $\Gamma_2 = 4.1 \quad 0.3_{stat.} \quad 0.3_{syst.}$

Milagro & Argo: A TeV Cosmic Ray Anisotropy ?

- Localized anisotropy on 5-10° size scale with a fractional excess up to 7x10⁻⁴ above the cosmic ray background (15 σ)
- Excess is *not* gamma rays, but hadronic cosmic rays (7 σ)
- > Different spectrum than cosmic rays (4 σ) that is harder up to ~10 TeV
- Gyroradius of a 10 TeV proton in a 1 mG field is 0.01 pc (2000 AU)
- Cosmic Ray Propagation and/or nearby source?

Active Galactic Nuclei (AGN)

Fermi's dominant source class, but

- Emission mechanisms (particularly for high energy component)
 - Leptonic (IC of synchrotron or external photons) or
 - hadronic ($\pi_0 \rightarrow \gamma \gamma$, proton synchrotron)
- Emission location
 - Single zone for all wavebands (concentration of the second second
 - Opacity effects and energy-dependent photospheres
- Particle acceleration mechanisms
- Jet composition
 - Poynting flux, leptonic, ions
- Jet confinement
 - External pressure, magnetic stresses
- Accretion disk—black hole—jet connection
- Effect of blazar emission on host galaxies and galaxy clusters

The LAT Bright AGN Sample (LBAS)

- 3-month dataset, TS>100
- 132 0FGL (Bright Source List) sources at |b|>0
- 106 AGNs associated
- CGRaBS-CRATES (Healey+ 08)
- BZCat (Massaro+ 08)
- EGRET sources :30%
- 58 FSRQs
- 42 BLLacs (40%), 10 HPBs
- 2 Radio Galaxies: Cen A, NGC1275
- 4 AGN yet to be classified

The First LAT AGN catalog

- 11 month data set
- 1079 TS>25, |b|>0 sources
- 700 AGNs
- 120 candidates (CRATES)
- Census:
 - 228 FSRQs
 - 256 BLLacs
 - 40 left to be classified
 - 6 radio-galaxies

Differences between Northern Hemisphere and Southern one (FSRQs: 7%, BLLACs: 25 %)

Blazars: Photon index - Flux distributions

Photon index vs v_{syn}

- All (but one) FSRQs are LPBs
- Most BLLacs are HPBs BLLac- LPBs: 49 BLLac- IPBs: 46 BLLac- HPBs: 117
- Fairly strong correlation between γ -ray photon index and ν_{syn}
- in LBAS, even stronger correlation observed

Photon index distributions in LBAS

Blazars: Redshift distribution

FSRQs

Similar to parent populations but:

• FSRQs

- no change of Γ with z
- BLLACs
 - notable evolution of Γ with z

1.5

2

redshift

2.5

3

3.5

photon index

3.5

2.5

1.5

0

0.5

Radio (non-blazar) Galaxies

Cen A

- nearest radio galaxy, FRI, D=3.7 Mpc, seen by EGRET and HESS
- Fermi-LAT detection. G: 2.71 0.09, TS=318
- two-zone SSC model required to reproduce whole SED

M 87

- giant radio galaxy, FR1, D=16Mpc
- detected by HESS, VERITAS
- G: 2.26 0.13, F_{8:} 2.45 0.6, TS=108
- No indication of variability over 11 months
- good fit of SED with one-zone SSC (e from sub-pc core)

NGC 1275

- "cooling core" cluster
- detected by COSB, not by EGRET
- LAT flux 8 x larger than EGRET upper limit

Further AGN-classes or ambiguity in classification?

PMN J0948+0022, Narrow-line, radio loud Sy1

- SED similar to FSRQ, less powerful
- Radio emission is strongly variable and with flat spectrum \rightarrow suggests Doppler boosting, now confirmed by LAT
- 3 similar other sources detected

CHANDRA X-RAY [3-COLOR]

Cen A: The Giant Radio Lobes

- Radio source extent ~ 10° , at d=3.7 Mpc, 600 kpc
- Spectra of ambient photons as seen by lobes
 - CMB dominant at low-E
 - EBL (opt+IR) contributes at high-E
 - Host galaxy and dust negligible
- B close to equipartition
- electrons must be accelerated in situ

Isolated Neutron Stars / Pulsars

14 August 2009 | 51 Fermi Detecting Gamma-Ray Pulsar NAAAS **MAAAS**

> Fermi Detecting Samma-Ray Pulsar

γ-ray photons from PSRs are not frequent (1 over 1330 rotations in case of Crab pulsar)

Fermi observations are long: billions of rotations

 \rightarrow high precision needed for phase calculation!

There are two options:

Blind search in γ-ray data
Problems: manifold search window, trials, timing noise...

Forward folding with known ephemerides Problems: ~ 2000 PSRs known, impossible to get contemporary timing solutions for all along LAT obs

The known γ-ray pulsars have Ė > 3.10³⁴ erg/s. Pulsars may not be detectable below this value. We decided to focus on pulsars with: Ė > 10³⁴ erg/s

224 y-ray pulsar candidates

Pulsar timing consortium

Jodrell Bank (England)

RXTE

A PE WAR

Prime Galactic Populations: Pulsars

31 gamma-ray and radio pulsars (including 8 msPSRs)

Pulses at ~1/10th real rate

△ EGRET pulsars

young pulsars discovered using radio ephemeris

★ millisecond pulsars discovered using radio ephemeris

high-confidence detections from 1st six month Fermi operations

Pulsar in CTA 1

• exhibits all characteristics of a young high-energy pulsar (characteristic age ~1.4 x 10 yr), which powers a synchrotron pulsar wind nebula embedded in a larger SNR.

• spin-down luminosity ~10³⁶ erg s⁻¹, sufficient to supply the PWN with magnetic fields and energetic electrons.

• γ -ray source at *l,b* = 119.652, 10.468; 95% error circle radius =0.038° contains the X-ray source RX J00070+7302, central to the PWN superimposed on the radio map at 1420 MHz

 pulsar off-set from center of radio SNR; rough estimate of the lateral speed of the pulsar is ~450 km/s

Blind-searched Fermi PSRs

(m) J1958+2846

1.5

0.5

(n) J2021+4026

1.5

0.5

(o) J2032+4127

1.5

0.5

0 0.5 1 (p) J2238+59

1.5

What means "radio-quiet"?

25 gamma-ray selected pulsars

➡ 3 detected, 21 upper limits (all <70 µJy), 1 left to observe</p>

The power of timing

- Improved rotational parameters
- Study timing noise and glitches (free from any radio propagation effects)
 - Glitch detected in CTA1 pulsar on 2009 May 1
- Precise positions, which enable multiwavelength follow up!
 - Sub-ms residuals lead to arcsec position accuracy

Prime Galactic Population: Pulsars

31 gamma-ray and radio pulsars (including 8 msPSRs)

16 gamma-ray only pulsars

Pulses at ~1/10th real rate

▲ EGRET pulsars

young pulsars discovered using radio ephemeris

- ★ millisecond pulsars discovered using radio ephemeris
 - pulsars discovered in blind search

high-confidence detections from 1st six month Fermi operations

Globular clusters known to host sizeable number of msPSRs: 47Tuc detected as a (steady) GeV gamma-ray source Adaptively smoothed counts maps (200 MeV - 10 GeV, s.n.r = 5)

Large area The source lies in an isolated sky region

<u>Zoom</u>

Location of LAT source relative to 47 Tuc red circle: LAT 95% error radius contours: DSS2 stellar distribution (arbitrary units)

Other Globular Clusters ?

There are ~ 100 *MSPs in 26 GCs.*

Promising sources of collective emission. Some more individuals might be detectable. Search for pulsations ongoing.

Gamma-Ray Bursts

GRBs: We have come a long way since...

Brightest explosions in Universe (10⁵¹ erg in few x 10 sec flash) standard candles?

Black hole birth progenitors? sub-classes?

Ultra-relativistic outflows (Γ ~ 100) particles vs pointing flux? internal vs external shocks?

Early universe probes GRBs from Pop III stars? metalicity effects? usable for cosmology?

The One 18 GeV photon at ~T₀+75 min

Hurley et al. Nature 1994 372, 652

Gonzalez, Nature 2003 424, 749

Fermi Detection of GRBs

> 327 GBM detection since 09/10/2009
> 12 LAT detections (out of 166 in FOV)

Angle to LAT boresight (deg)

The LAT Bursts so far ...

GRB	duration	# of events > 100 MeV	# of events > 1 GeV	delayed HE onset	Long- lived HE emission	Extra Component	Highest Energy	Redshift
080825C	long	~10	0	?	1	x	~600 MeV	
080916C	long	>100	>10	4	4	?	~ 13.2 GeV	4.35
081024B	short	~10	2	1	4	?	3 GeV	
081215A	long	—	—	—	—		—	
090217	long	~10	0	x	x	x	~1 GeV	
090323	long	~20	>0	?	4	?	?	3.57
090328	long	~20	>0	?	4	?	?	0.736
090510	short	>150	>20	1	4	1	~31 GeV	0.903
090626	long	~20	>0	?	4	?	?	
090902B	long	>200	>30	1	4	1	~ 33 GeV	1.822
090926	long	>150	>50	•	1	1	~20 GeV	2.1062

Redshift Determination

GROND (at the ESO 2.2 m) measured redshift at z=4.35±0.15 using Lya break by simultaneous 7-filter observation

Swift XRT image of afterglow NASA/Swift/Stefan Immler

The Long-Lived HE Emission

HE (>100 MeV) emission shows different temporal behavior

- Temporal break in LE emission while no break in HE emission
 - Indication of cascades induced by ultra-relativistic ions?
 - or angle-dependent scattering effects?
 - Separate emission mechanisms between keV and GeV photons?

Implications

Quantum Gravitiy models predicted energy dependence of the speed of light

AGN

(Biller 99)

GRB

(Boggs 04)

1017

AGN

(Albert 08)

$$c' = c \left(1 \pm \xi \frac{E}{E_{\rm P}} \pm \zeta^2 \frac{E^2}{E_{\rm P}^2} \right)$$

GRB

(Ellis 06/07)

1016

Pulsar

(Kaaret 99)

1.2 E_{planck} GRB090510

Galaxy clusters - CR calorimeter?

CR storage over cosmological time scales

CRs, AGN feedback, DM annihilation

No easy pick for gamma-ray astronomy, ...still upper limits:

Starformation & Cosmic Rays - YES!

NGC253 by HESS & Fermi

Starburst Galaxies

- Starburst galaxies distinguished by regions of rapid star formation, 10-1000 × Milky Way rate
 - Correspondingly high supernovae rates
 - Dense clumps of molecular gas
 - Highly luminous at infrared wavelengths, radio correlation
- M82 and NGC 253
 - Two closest starburst galaxies (~3 Mpc)
 - Edge-on viewing angles
 - Small (~100 pc scale) starburst regions
 - Star formation rate ~10 × Milky Way rate
 - Lack active nuclei
 - Extensively studied in multiple wavebands

Fermi Detection Significance Maps

Test Statistic (TS) = -2 log(L_{source} - L_{no source}) 0.68, 0.95, 0.99 confidence level localization contours M82 and NGC253 appear for LAT as point sources, starburst regions unresolved.

Gamma-Ray Binaries

j.

Binaries:

Both LS I 61+303 and LS 5039 have been found as orbital modulated GeV sources, too.

Hot from the press: Cyg X-3

offpulse PSR J2032+4127

Correlated variability with other wavebands

Orbital periodicity (4.8h) identified

Outlook for the photon messenger → *Fermi* continues measuring the GeV sky with unprecedented quality

 \rightarrow resolve O(1000) sources, spiral arm structure, individual molecular clouds, local group galaxies, CR proton spectrum, anisotropy?, & continues indirect DM searches