The FAIR Chance for Nuclear Astrophysics

Karlheinz Langanke GSI Helmholtzzentrum Darmstadt TU Darmstadt Frankfurt Institute forAdvanced Studies

Kolloquium, Heidelberg, June 26, 2012

Experiment-Collaborations in FAIR

Atomic Physics, Plasma- & Applied physics:

nuclear- and quark-matter:

APPA

FAIR

exotic nuclei and nucleare astrophysics:

NuSTAR

structure and dynamics of hadrons:

Google Earth: FAIR in 2020

Over 2500 scientists and technicians from more than 50 countries

PANDA

SPARC

CBM

FAIR: it has started!

The first workers

Signatures of Nucleosynthesis

nucleosynthesis processes
nucleosynthesis history of our universe

The stellar abundance distribution is a reflection of nuclear structure and nuclear stability!

solar abundance distribution

Nucleosynthesis processes

Stellar Life

For a 25 solar mass star:

Stage	Duration
H → He	7x10 ⁶ years
He → C	7x10 ⁵ years
C→O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

Star at the end of its life

Star has an onion-like structure

Iron is the end-product of stellar burning

After nuclear energy source has ceased, stellar core collapses under its gravity

SUPERNOVA

Supernova collapse and explosion

In about a second, the core radius reduces from 6000 km to 20 km

Collapse stops when the inner core corresponds to a gigantic nucleus with about half of a solar mass. Most of the gain in gravitational energy is released in the explosion. This energy corresponds to the production of 100 Suns during their entire life of 10 Billion years.

Supernova: collapse phase

Important nuclear input:

Electron capture on nuclei

Neutrino-nucleus reactions

Supernova: explosion

Important nuclear input

Equation of state

Neutrino processes

Electron capture: Lab vs Stars

Capture is dominated by Gamow-Teller transitions During collapse, electrons are described by Fermi-Dirac distribution with chemical potentials of order a few MeV Parent nuclei are described by thermal ensemble

Calculating stellar capture rates

data KVI Groningen

Capture on nuclei in mass range A~45-65 calculated by large-scale shell model

Capture rates are noticeably smaller than assumed before!

Digression: Type la supernovae

Content of universe:

Type la standard candle

TYPE IA (THERMONUCLEAR) SUPERNOVA

(NOT TO SCALE)

accretion onto a pernova remnant withou white dwarf star explosion a neutron star

Abundances in Type la's

Type la's have produced about half of the abundance of nickel-iron range nuclei in

the Universe

Modern electron capture rates solve inconstency problem in Type Ia supernova abundance production

Experiment vs shell model

Cole, Zegers et al., PRC, in print

Iron-nickel mass range under control

With increasing density, less sensitivity to details of GT distribution -> models less sophisticated than shell model suffice, e.g. QRPA

Abundance distribution during collapse

Electron captures drive nuclear composition towards neutron-rich unstable nuclei

Unblocking GT for nuclei with neutron numbers N>40

In Independent Particle Model, GT are Pauli-blocked for N>40 In reality, blocking does not occur due to correlations and finite T. Calculations of rates by SMMC/RPA model.

B(GT) strengths for 76Se

34 protons, 42 neutrons

Zhi, Martinez-Pinedo, Sieja, Nowacki

Neutron occupancies

Data from transfer reactions: J.P Schiffer and collaborators

Convergence with truncation level

Cross-shell correlations converge slowly. Hence, models like thermofield dynamics model or finite temperature QRPA, which consider only 2p-2h correlations, do not suffice.

(p,n) charge-exchange reactions on rare isotopes M. Sasano, R.G.T. Zegers et al. PRL 107, 202501 (2011)

First successful experiment: 56Ni(p,n) to extract Gamow-Teller strengths for supernova unstable isotope

З

Excitation Energy in 56Cu (MeV)

5

New method for (p,n) in inverse kinematics: applicable to exotic nuclei of any mass and excitation energy. •Inverse kinematics •Requires beam intensities >10⁴ pps •Explore very neutron rich nuclei in next generation RI beam facilities like FRIB@MSU

0

ct Gamow-Teller strengths model-independently eak reaction rates for late stellar evolution (supernovae)

Inelastic neutrino-nucleus scattering

1e-08

validation of nu-nucleus cross sections from precision (e,e') M1 data

Martinez-Pinedo, Richter, Neumann-Cose

neutrino scattering on nuclei acts as additional obstacle – in particular for high-energy neutrinos supernova neutrino spectrum shifts to lower energies smaller event rates for earthbound supernova neutrino detectors

Janka, Hix, Martinez-Pinedo, Juogadalvis, Sampaio

Inelastic neutrino-nucleus scattering

Potential consequences:

- thermalization of neutrinos during collapse
- preheating of matter before passing of shock
- nucleosynthesis, vp-process
- supernova neutrino signal

- neutrino cross sections from
 (e, e') data
- validation of shell model
- G.Martinez-Pinedo, P. v. Neumann-Cosel, A. Richter

Effects of Nuclear Elec Core Collapse

The electron capture at high densities results in lower Y_e and generates neutrino wind which is necessary for driving the shock.

Electron captures on nuclei dominate

Collapse trajectories

Trajectories during final collapse are similar for different masses

A. Marek, H.-Th. Janka, G. Martinez-Pinedo

Neutrino signal after burst

shock wave dissociates matter into free protons and neutrons electron capture on protons gives strong neutrino signal is this a 'standard candle'?

A. Marek, H.-Th. Janka, G. Martinez-Pinedo

Supernova neutrino signal

Inelastic neutrino-nucleus scattering adds to the opacity of high-energy neutrinos

Hix, Janka, Juodagalvis, Martinez-Pinedo, Müller, Sampaio

Consequences for supernova detectors

Detector	Material	$\langle \sigma \rangle$ (10 ⁻⁴² cm ²)		Change
		With $A(\nu, \nu^{\gamma})A^{\star}$	Without $A(\nu,\nu')A^*$	Ŭ
SNO	d	5.92	7.08	16%
MiniBoone	12C	0.098	0.17	43%
	¹² C (N _{gs})	0.089	0.15	41%
S-Kamiokande	¹⁶ 0	0.013	0.031	58%
lcarus	⁴⁰ Ar	17.1	21.5	20%
Minos	⁵⁶ Fe	8.8	12.0	27%
OMNIS	²⁰⁸ Pb	147.2	201.2	27%

Change in supernova neutrino spectra reduces neutrino detection rates

Supernova Simulation

 Recent progress:
 Multi-dimensional hydrodynamics
 Improved nuclear input – Electron capture

 Neutrino-induced reactions

Courtesy: Hans-Thomas Janka

Neutron Stars: supernova remnants

 Neutron Stars are laboratories for matter at extreme densities

Neutron rich nuclei
Equation of State for nuclear matter
Exotic phases?

Courtesy: D. Paige

Explosive Nucleosynthesis

Neutrino reactions with nucleons determine the proton-to-neutron ratio

Neutrino-Proton Process (early ejecta, proton rich)
R-Process (late ejecta, neutron rich)

Possible consequences of high neutrino flux in shock-front

Anti-neutrino capture on protons produce neutrons at late times
(n,p) reactions simulate beta decays and overcome waiting points

The neutrino-proton process

- Protonrich matter is ejected under the influence of neutrino reactions
- Nuclei form at distance where a substantial antineutrino flux is present

Antineutrinos help to bridge long waiting points via (n,p) reactions

 $\bar{\nu}_e + p \rightarrow e^+ + n; \quad n + {}^{64}\text{Ge} \rightarrow {}^{64}\text{Ga} + p; \quad {}^{64}\text{Ga} + p \rightarrow {}^{65}\text{Ge}; \dots$

C. Fröhlich, G. Martinez-Pinedo, et al., PRL 96 (2006) 142502

vp-process in hydrogen rich, high neutron flux environments

Making Gold!

Humans

Old stars in galactic halo have the same r-process abundances as the solar system for A>130, but not below.

two distinct r-process sites?

Johann Friedrich Böttger, Alchemist Inventor of European White China In Meissen, Germany

The R-Process

Masses
Half lives
Neutron capture rates
Fission
Neutrino reactions

Courtesy: K.-L. Kratz

Potential r-process sites

Neutrino-driven wind from a nascent neutron star in a supernova explosion

Woosley et al.

Neutron star mergers

Freiburghaus et al.

Supernova trajectories

Mass shell trajectories + entropy

Courtesy: Almudena Arcones

Dynamical r-process

Free protons, neutrons are ejected at high temperature matter cools, nuclei form by charged particle reactions At T~3 GK charged particle reactions freeze out -> seed Neutron captures on seed constitute r-process

Supernova shock front nucleosynthesis

Brad Meyer

R-Process Simulation

Courtesy: Gabriel Martinez-Pinedo

RIRE contribution: masses FAIR reach

16

Mass measurements at FAIR

Impact of nuclear half-lives

Impact of nuclear half-lives on r-process abundances

Knowing the half-lives we will constrain the dynamics of the supernova explosion

FAIR contribution to half-lives

known masses

20

The RIB era for r-process

Courtesy: Hendrik Schatz

Next-Generation Isotope Facilities

Willy Fowler: Father of Nuclear Astrophysics

The RIB Chance: New Horizons

