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Abstract:

Earth-like planets and the solid cores of gaseous planets like Jupiter are formed in circumstellar disks by
the coalescence of solids (grains) that were originally mixed with gas in the parental molecular cloud. This
process involves growth over 13 order of magnitude in size and more than 40 orders of magnitude in mass,
from the sub-micron grains in the interstellar medium to Earth.

The physical and chemical processes that occur at different times in this path are complex and not well
understood.

In this talk, | will review the more important processes that take place in circumstellar disks, including grain
settling, coalescence and fragmentation. | will then discuss the observational evidence we have of grain
growth in disks, and the challenge it poses to the planet formation theories.



From disks to planetary systems

"Planet Semi-Major Axis" vs "Planet Mass" (713)
!

Planet Mass (M])
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Two possible routes
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From ISM grains to planetesimals:

11 orders of magnitude in size (from sub-micron to km)
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Theoretical prediction:

e at any given distance from
the star, grains larger than
a critical size cannot exist:

e Ciritical grain size :
e Mmeters @ 1AU in the solar nebula
e millimeters @ 50AU in a TTS disk
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A nice collaboration:

e The observers: L.Ricci, L. Testi, A. Natta, M. Benisty, A.
|sella

e The theoreticians: K. Dullemond, T. Birnstiel, P. Pinilla, C.
Dominik, etc. (the Heidelberg group)
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Circumstellar disks

e (Gas and dust (initially, ~1% in
mass)

Mass: few % of Mstar
Dense, cold and neutral
Lifetime: few million years

Large range of properties

e Mass (only dust)

e Radius
e Mass accretion rate

e Stellar properties
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How do we “measure” grain sizes”?

e By measuring the dependence of the opacity on
wavelength

8ize=0.1U : Ky~ V20

size=30U : K~ V20

m

I — " ~ 0.3
size=3cm . K~V

LOg Icabs (sz/g)

Log wavelength (um)

Flat opacity —— grains >> wavelength
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Radiation transfer in a nutshell

Fv ~ (l_e—‘c) Bv(Tdust) Area

(K, ~VP)
Optically thin emission Optically thick emission
i v P2 )
F, ~v&~v F ~B, (T, )Area ~v

\ @@2 No access to the

dust properties
From the spectral index o one

can derive the opacity index
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Disks are optically thin only at mm
wavelengths

e Flat spectral distribution (o ~ 2): grains >1Tmm at R~50 AU
e Ciritical size for growth models !
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Many years of observations using mm
interferometers

e Disks are large and
optically thin at mm
wavelengths

e Most disks have flat
spectra (a<2.5): no
dependence on flux,
stellar mass, age,
environment, etc.

Beckwith and Sargent 1995
Testi, NattaeP g, 29012003, et:
And many oth

\ O 4
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T Tauri disks in Taurus, Ophiuchus,
Orion (age ~ 1-3 My)
Ricci et al. 2009, 2010, 2011

® Tqurus

4.5} 1| v Al TTS have very large
40k j| grains in their outer disk
- _ISM_ o _____3
£ 3.5F : . .
Tk 1| v These grains contain
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Masses

;
Fv ~ (l_e—‘c) Bv(Tdust) Area E" -
N Bv(Tdust) Ky Mdust _2?2.5_'2 —— >
Log a,,, (cm)

100 My @ 1mm =K, M
Kimm < 1 cm?/g

Mdust >3 10-4 Msun = Mdisk >0.03 Msun
Mdisk/M

dus

> (.06

star

Only 5 times less than the maximum mass
(3 O% Mstar)
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We have convincing
evidence that mm-cm grains
dominate @ 50AU
inmost TTS

The mm barrier at 50 AU is broken!



Grain Growth

e Coalescence
e Fragmentation
e Radial drift & gas drag

— Controlled by gas density and motions:
turbulence
radial inward motion (accretion)

Disk structure and dynamics
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Sedimentation and coalescence

e Grains are pulled toward the
midplane by the vertical
component of the stellar
gravity

e But kept at high z by coupling
with gas
e (gas is not collapsed in the

midplane because of thermal
pressure and turbulence)

e The coupling depends on Dullemond and Dominik 2005
grain size: larger grains drift

more easily toward the
midplane and grow even
larger in the process

Too fast! Disks would disappear in 1000 years
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Fragmentation

e Grain collisions may lead
to sticking but also to
fragmentation

e critical velocity u; ~ 1-10 m/s

e What kind of fragments?
Laboratory experiments

Coalescence+ settling+fragmentation:
Not bad, but ...
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The enemy: radial inward drift

The pressure-supported gas moves at sub-keplerian velocity

E 1AU
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~\

particle ' gas
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Total radial dust velocity |cm/s]

1.0k

0.1 . 1
1078 107

1072 10° 10? 10*
Particle size [meter]

Drift velocity is size-selective, peak depends
on gas density + dynamics
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Full 2-D dust evolution models

1 My, Mdisk~50M

Surface a4 10
Density
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Trapping dust in pressure maxima®?

Spiral waves P . .
O] \qubkepidrSPe™  upkept
MRI (dead zones) P Keplert ~ SUPTREPIET

Gap edges
Etc.
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Introducing strong inhomogeneities

in the gas density profile
Pinilla et al. 2012
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Fig. 1. Comparison between: The gas surface density (left plot) taken in this work (Eq. 1) for two different values of the amplitude
and constant width (dashed and dot-dashed lines). The Rossby wave instability (Regaly et al. 2011), and the presence of zonal flows
due to MHD instabilities (Uribe et al. 2011). Right plot shows the pressure gradient for each of the gas surface density profiles.



Global models of grain growth

Disk physical model
+ grain physics

Dust size
distribution function

v

[ Opacity «, (f-index) ]

v

[ Model F, (a-index) ]

(Birnstiel et al. 2010; Pinilla et al. 2012)
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Larger grains
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Models of TTS disks with drift
suppressed

Coagulation+sedimentation+fragmentation

parameter values
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Models with drift: no way!

Pinilla et al. 2012
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Models with pressure bumps
(reduced drift efficiency)

Pinilla et al. 2012
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Brown dwarf disks must have low
gas mass (M /M., <0.3)
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Grains grow equally in disks of all
masses
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How?
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Summary

e In order to form planetesimals and planets, grains have to
grow by many order of magnitudes

e Models of growth in proto-planetary disks predict that there
is a maximum size (1m at 1AU, Tmm at 50 AU), which is a
barrier for further growth

e The 1mm barrier at 50 AU can be tested via mm-
interferometric observations: at age of ~1My, the mm barrier
is broken in all kind of disks, around stars and brown dwarfs

e How?
e Pressure bumps (l.e., disk inhomogeneities) are certainly required
e lces?

e Maybe our view of disk structures and dynamic is wrong
(turbulence?)

e We need more and better observations (gas/dust ratios,
alpha vs. R, etc. etc.)
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