Solar Observations with Gregor

Oskar von der Lühe and the Gregor Team

Kiepenheuer-Institut für Sonnenphysik, Freiburg Astrophysikalisches Institut Potsdam Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau

Heidelberg, 24. January 2012

 The Gregor Project and ist motivation The Gregor facility – Telescope Adaptive optics - Post-focus instruments First images MAN Outloo

Who is Gregor?

GREGOR Consortium

Kiepenheuer-Institut für Sonnenphysik (KIS) (chair) Max-Planck-Institut für Sonnensystemforschung (MPS) Leibniz-Institut für Astrophysik Potsdam (AIP)

Partners

Instituto de Astrofísica de Canarias (IAC) Astronomical Institute (AI), Acad. of Scie. of Czech Republic Institut für Astrophysik Göttingen (IAG, until 2008)

Why large Solar Telescopes?

Secci, A., Le Soleil Pt. 1 and 2 (2nd Ed.), Gauthier-Villars, Paris 1877

Why do

Most small scale solar features are caused by magnetic field and its interaction with the plasma

Scientific Goals with Gregor

- Study of the dynamics and magnetic field from the photosphere into the chromosphere
- Investigation of the photosphere/chromosphere as an integrated system
- Observations of small scale magnetic structures with high spectral and spatial resolution and complete magnetic information (full Stokes vector)
- Step between current and large solar telescopes like ATST and EST

Project Timeline

• 2001: Gl			
• 2001: Int	Project Cost Overview	w	
• 2003: De			
• 2004: Er	Personnel, all partners	4.5 №€	
• 2009: M	Non-Personnel and Investments	8.4 M€	
• 2009: Int	(STB Funding	4.5 M€)	
te: • 2011: Int	(Gregor@Night	0.6 M€́)	
• 2012: St	(HOAO (EU)	0.3 M€)	
	Total	12.9 M€	

GREGOR Overview

- 1.5-meter aperture
- Primary mirror: f=2.5 m; light-weighted Zerodur, active cooling
- 3-mirror Gregory configuration
- Effective focal length: 55 m (f/D=38)
- Nominal field-of-view:
 150" Ø
- Wavelength coverage: 350 nm – NIR
- Integrated adaptive optics

Instrument Floor

- High order AO, DM with approx 200 actuators (2011).
 First light DM with 80 actuators, MCAO in 2012
- M11 active (slow TipTilt) to compensate pupil image motion
- Image de-rotator in 2011

Light distribution system

- M16
- Exchangeable dichroic beamsplitter: GFPI, GRIS (650nm; 900nm)

AO

- High order AO, DM with approx 200 actuators (2011).
 First light DM with 80 actuators
- M11 active (slow TipTilt) to compensate pupil image motion
- removable M11 → bypass AO

gAOS: GREGOR (high order) Adaptive Optics System

- 50mm TipTilt with ±30´´range
- 50 mm DM, made by CILAS
- 6 µm stroke
- 3.2 mm actuator spacing, 100 mm projected on the pupil
- 196 active actuators
- Mikrotron EOsens camera (400x400pixels, 3.3 kHz frame rate)
- 24x24 pixels per subaperture, 10" FoV
- bandwidth (0db) = 150 Hz
- WFS next to science instrument
- Installation: Jan. 2012

Overall architecture

MCAO

- MCAO with two high layer DMs (2012)
- FOV 60 arcsec

MCAO testbed @ KIS

- First light spectro-polarimetry
 - GFPI: Double FPI filtergraph with full Stokes polarimeter
 - GRIS: Infrared Slit-spectrograph with full stokes vector polarimetry; Slit-jaw unit (H_{α} ; IR_{cont}; 3rd TBD)
- Simultaneous observation with GFPI and GRIS from the beginning
- Broad Band Imager
 - Speckle reconstruction

Panoramic Spectropolarimeter (GFPI)

- 2 serial FPI in collimated beam
- 77" × 58"
- spectral resolution: $\Delta\lambda < 4 \text{ pm} \rightarrow \lambda / \Delta\lambda \sim 200.000$
- 530 nm 870 nm
- Full Stokes polarimetry
- Refurbished "Göttinger FPI" / VTT / Tenerife

-50 -30

- Preliminary setup tested at VTT
- Extension with blue channel (below 530 nm) planned

-10 10 30 50 -1.9 -1.2 -0.5 -B_{LOS} [Gauss] v_{LOS}, high

·1.9 —1.2 —0.5 0.2 0.9 1.5 v_{Los}, hìgh [kms⁻¹]

GRating Infrared Spectrograph (GRIS)

- Long-slit spectrograph including full Stokes polarimetry in IR (similar to TIP / VTT / Tenerife)
- Slit jaw device with high speed cameras (Hα, IR cont. + ?)
- Extension to visible wavelen

Technical data

Spatial sampling Spatial coverage

Spectral sampling @ 1083 nm Spectral coverage @ 1083 nm

Spectral sampling @ 1565 nm Spectral coverage @ 1565 nm

Broadband Imager

Beyond 2012 GREGOR @ Night

Night-time observations with GREGOR will be used for a large survey to search for solar twins. To this end, a high-resolution stellar spectrograph, *GREGOR@ Night*, will be developed jointly by KIS and the AIP. The spectrograph will be installed in 2013.

Stellar Spectrograph

long-term observations

rotation up to 100 d

cycle up to 20 a or more

need for dedicated telescopes

- observation of solar-like stars (F–M)
- photospheric lines
 chromospheric emission
 resolution *I*/D*I* ~ 100.000

fully robotic night-time mode

- fiber-fed double echelle spectrograph (F2)
- environment sensors for robotic mode
- use STELLA heritage (2 x 1.2m in Tenerife) science drivers:
- photospheric & chromopsheric stellar activity
- ► spectroscopy of candidates for planetary systems discovered by COROT, EDDINGTON, KEPLER → test e.g. rotational modulation

Control system

- Complete remote control
- GUI
- DCP commands
 - Between all instruments
 - From shell (e.g. script, command line) start track sun: "dcp gtcs trackmode 1"
- Trigger bus to synchronize instruments and cameras (incl. at VTT)

Control system

Primary mirror, field Cooling

Cooling system tests

Primary 1m mirror and field stop

Primary mirror was slightly overcooled, to avoid large positive temperature differences to ambient temperature → 1.5m M1 needs more powerful cooling system!

Fail safe tests of field

Dynamic wavefront tilt in pupil

Primary mirror

Overview

- Originally planned Cesic mirror replaced by light weighted Zerodur mirror (~205kg)
- Summer 2009: Start of polishing @ Zeiss
- Zerodur mirror requires redesign of mirror cell und cooling system (Zerodur less stiff, less thermal conductivity than Cesic)

Primary mirror Cooling principle

 ≈ 0.4 - 0.6 °C gradient across one cooling cell

Study of Zerodur primary mirror

Temperature gradient: face sheet \rightarrow back side

- ≈ 2 °C gradient from top to bottom
- ≈ 0.4 0.6 °C gradient across one cooling cell

Primary mirror

Support system (mirror cell)

- 12 lateral and 12 axial astatic mounts (with counterweights)
- 3 lateral and 3 axial static mounts

Primary mirror

Assembly

- Assembly of the cooling system to the M1 cell (beside the telescope)
- Assembly of the primary mirror to the M1 cell (beside the telescope)
- Attaching the mirror cell to telescope structure

Primary mirror Support system and testing

First image with Gregor

Pictures – Sonne …

- Images of the Sun with a field of ca. 110 x 70 arcsec
- Continuum in ca. 10 nm wide spectral bands (Filterbox C) between 396 nm und 709 nm, plus G-Band (1 nm)
- Demonstration of state of the teleseope in July

Sunspot without Adaptive Optics

Sunspot with Adaptive Optics

Gregor, 15. 07. 2011, 656 nm, with A0

Superat with AO I SI 120 mm

... Mond, ...

... und Sterne!

Comprehensive studies of large to medium scale processes in the sola

Small to medium aperture ground based networks and space facilities

43

and/or

New High Resolution Observatories

Conclusions

- Gregor had a resolution of ca. 2 arcsec in July, 4 weeks after M1 installation
 - M1 position alignment not completed
- No indication for high order optical errors
 - ripple appears enhanced in Foucaultgrams, but contributes little
- No noticeable negative impact of cooling on image quality
- Gregor has the potential to become an excellent telescope!