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This is a continuation of part I and II of this report. In this third part we report results
obtained with a cool stellar model—model d3t40g45mm00n01 with Teff = 4000 K
and logg = 4.5, provided by Matthias Steffen. This model has, like the model with
Teff = 5000 K (d3t50g45mm00n04), n1×n2×n3 = 140×140×141 grid cells. The
size of the box is 4.702 Mm × 4.702 Mm × 1.2269 Mm. The τ = 1 level is at a
height of about 0.74 Mm from the bottom. The grid cells have a horizontal width
of 33.8 km and a vertical extent varying from 11.75 km in the bottom part of the
convection zone to ≈ 7.9 km in the top part of the convection zone and down to
6.78 km in the top part of the box. As in part II, we examine the total radiative output
at the top boundary as a function of time and some horizontally averaged quantities
as a function of height and of time. The initial model consists of relaxed convection
as computed with the Roe solver and Van Leer reconstruction. The initial magnetic
field (if not set zero) is homogeneous and vertical with a strength of 50 G.

job solver reconstr. N_ordCT νart. Binit [G] initial model tend [s]
job_d3t40g45mm00n01_Roe Roe VanLeer — 0.0 — d3t40g45mm00n01.1320402 3606
job_d3t40g45mm00n01_B0 HLLMHD PP 2 0.0 Bz = 0 d3t40g45mm00n01_B0 7209
job_d3t40g45mm00n01_v50 HLLMHD PP 2 0.0 Bz = 50 d3t40g45mm00n01_v50 7206
job_d3gt57g44n59_B0 HLLMHD PP 2 0.0 Bz = 0 d3gt57g44n59_B0 3603
job_d3gt57g44n59_v50 HLLMHD PP 2 0.0 Bz = 50 d3gt57g44n59_v50 3603
job_d3t50g45mm00n04_dt HLLMHD PP 2 0.0 Bz = 0 d3t40g45mm00n01_B0 3601
job_d3t50g45mm00n04_RK HLLMHD PP 2 0.0 Bz = 0 d3t40g45mm00n01_B0 3605

Table 1: Model simulations. job_d3t50g45mm00n04_dt was computed with a max-
imum time step of 0.1 s. job_d3t50g45mm00n04_RK was computed with Runge
Kutta 2nd order time integration.

In addition, Matthias has provided a solar model (d3gt57g44n59), which is
comparable in size and spatial resolution to the stellar models. This model has
n1× n2× n3 = 140× 140× 150 grid cells. The size of the box is 5.560 Mm ×
5.560 Mm × 2.25378 Mm. The τ = 1 level is at a height of about 1.364 Mm from
the bottom. The grid cells have a horizontal width of 40.0 km and a constant vertical
extent of about 15.125 km.

Table 1 gives a compilation of runs with the additional models and new runs with
model d3t50g45mm00n04.

Radiative flux at the top boundary

Figure 1 shows the total radiative output at the top in units of σT 4
eff of the two solar

models d3gt57g44n59_B0 (red) and d3gt57g44n59_v50 (green). For both models
sinflow = 1.7734×109 = constant and both were computed with HLLMHD + PP. Both
models show a similar and inconspicuous course in Frtop. However, in comparison
to the larger solar models job3DB0, job3dB0, and job3dRoe, shown in Fig. 1 of
part II, the amplitude of Frtop of the present models is larger and less regular. This
may be due to the different areas over which Frtop is averaged but it is nevertheless
surprising that the clear periodicity of the former solar models is basically absent
here.



2

Figure 1: Bolometric radiative flux through the top boundary, Frtop, in units of σT 4
eff

as a function of time. Solar model in a box of n1×n2×n3 = 140×140×150 grid
cells and dimensions 5.56 Mm × 5.56 Mm × 2.25 Mm. Red: B = 0. Green: initial
homogeneous vertical magnetic field of 50 G. Both computed with HLLMHD+PP.

Figure 2: Bolometric radiative flux through the top boundary, Frtop, in units of σT 4
eff

as a function of time. Red: Sun, blue: model d3t40g45mm00n01. Both are computed
with HLLMHD+PP and both have B = 0.
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Figure 3: Bolometric radiative flux through the top boundary, Frtop, in units of σT 4
eff

as a function of time. Blue: HLLMHD+PP, red: Roe solver with VanLeer. Both runs
with model d3t40g45mm00n01 and with B = 0 for HLL and without magnetic field
at all for Roe.

Figure 2 shows the total radiative output at the top in units of σT 4
eff for the Sun

(red) and for Model d3t40g45mm00n01 (blue), both computed with HLLMHD+PP
and B = 0. The red curve in Fig. 2 is identical to the red curve in Fig. 1. Other than
the fact that the Teff = 4000 K model is actually a little bit cooler than that nominal
value, the following is immediately apparent. The stellar model shows a regular
short period oscillation with increasing amplitude with time, which reaches ≈ 6%
vs. ≈ 3% for the Sun. This is similar to but more pronounced than what we already
found for the Teff = 5000 K model.

As in part II of this report for the Teff = 5000 K model, we now compare the
radiative output of the Teff = 4000 K model once computed with HLLMHD+PP and
B = 0 and once with the Roe solver and van Leer reconstruction without magnetic
field. The result is shown in Figure 3. As for the Teff = 5000 K model, the Roe solver
does not show the large amplitude and regular oscillation of the model computed with
the MHD solver. Thus, again, it seems that these strong oscillation are an artifact of
the MHD solver. Moreover, here it seems that there is an instability at work, which
lets the amplitude of the oscillation unabatedly increase with time.

For the Teff = 5000 K model we found in part II of this report that the introduction
of a magnetic field did remove the oscillations. The fluctuations in the radiative
output of the magnetic model was looking similar to the solar model or to the model
computed with the Roe solver. Now, Fig. 4 shows the radiative flux through the top
boundary in units of σT 4

eff for the model with Teff = 4000 K, where the blue curve
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Figure 4: Radiative flux through the top boundary in units of σT 4
eff as a function

of time for the model with Teff = 4000 K. The blue curve refers to the model with
B = 0 computed with HLLMHD+PP, and the red curve to the model with an initial
homogeneous vertical magnetic field of 50 G computed with HLLMHD+PP.

refers to the model with B = 0 computed with HLLMHD+PP, and the red curve
refers to the model with an initial homogeneous vertical magnetic field of 50 G, also
computed with HLLMHD+PP.

Again, it seems that the magnetic field has a damping effect on the oscillations,
however not as drastic as for the Teff = 5000 K model. Here, the model with magnetic
field does oscillate with a similar high frequency as the model with B = 0 but with
considerably lower amplitude and the amplitude does not increase with time. Most
likely because the frequencies are not exactly the same, there is a slow phase shift
with respect to the oscillation of the non-magnetic model.

Mass fluxes

Fig. 5 shows the horizontally averaged, vertical mass flux at the level of 〈τ〉 = 1
as a function of time for the solar model job_d3gt57g44n59_B0 (red) and for the
stellar model job_d3t40g45mm00n01_B0 (blue) both with B = 0 and computed with
HLLMHD+PP.

As in Fig. 2, the stellar model oscillates with a larger amplitude than the solar
model does. The solar model oscillates with a frequency of ≈ 5.17min = 3.23mHz
while the stellar model oscillates with≈ 3.52min = 4.73mHz. The oscillation of the
stellar model seems to consists of a superposition of two slightly different frequencies
as two peaks gradually moves with respect to each other, which seems to produce a
beat frequency.

Fig. 6 shows the horizontally averaged, vertical mass flux at the level of 〈τ〉= 1
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Figure 5: Horizontally averaged, vertical mass flux at the level of 〈τ〉= 1 as a func-
tion of time. Red: Sun, blue: model d3t40g45mm00n01. Both are computed with
HLLMHD+PP with B = 0.

Figure 6: Horizontally averaged, verical mean mass flux at the level of 〈τ〉 = 1 as
a function of time for model d3t40g45mm00n01. Blue: HLLMHD+PP and B = 0.
Red: Roe solver with VanLeer and no magnetic field.
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Figure 7: Horizontally averaged, vertical mass flux at a level of 〈τ〉= 1 as a function
of time for the model with Teff = 5000 K. The green curve refers to the model with-
out magnetic field computed with the Roe solver, the blue curve to the model with
B = 0 computed with HLLMHD+PP, and the red curve to the model with an initial
homogeneous vertical magnetic field of 50 G computed with HLLMHD+PP.

as a function of time for the stellar model job_d3t40g45mm00n01, once computed
with HLLMHD+PP (blue) with B = 0 and once with the Roe solver (red) without
magnetic field. This figure confirms the result from Fig. 3 in that the Roe solver
produces much smaller oscillations than the HLL solver does. Different from the
Teff = 5000 K model (see Fig. 5 of part II), here the amplitude of the oscillation of
the model computed with the Roe solver does not increase with time.

Finally, Fig. 7 shows the comparison of the horizontally averaged, vertical mass
flux at the level of 〈τ〉 = 1 as a function of time for all models with Teff = 4000 K.
The green curve refers to the model without magnetic field computed with the Roe
solver, the blue curve to the model with B = 0 computed with HLLMHD+PP, and the
red curve to the model with an initial homogeneous vertical magnetic field of 50 G
computed with HLLMHD+PP.

Different from the Teff = 5000 K model where the red curve did approach the
amplitude and behaviour of the green curve (see Fig. 8 of part II), here, the magnetic
model keeps oscillating although with a much smaller amplitude than the model with
B = 0 computed with HLLMHD+PP (blue curve). Also, the oscillation amplitude of
the magnetic model seems not to grow with time but stays constant. Thus, similar to
the Teff = 5000 K model, the introduction of the magnetic field has a damping effect.
This is what we already stated in connection with Fig. 4.
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Variation of the time integration

Following a suggestion by Bernd Freytag, we next have varied the time integra-
tion in order to check if this would have any influence on the oscillations. So far
we were using the default time integration scheme when computing with the Roe
solver. When computing with HLLMHD we have set hdtimeintegrationscheme
= Hancock and the time step was allowed to vary with c_courant=0.7. For model
d3t50g45mm00n04 the time step varied between about 0.3 s and 0.45 s when inte-
grating with the Roe solver. When using HLLMHD+PP, the time step varied between
about 0.1 s and 0.4 s for the model with B= 0 in phase with the mass-flux oscillation.
For the model with initial homogeneous vertical magnetic field of 50 G, it varied be-
tween 0.1 s and 0.2 but stood most of the time very close to 0.2 s. The smaller time
step is certainly due to the magnetic field, which limits the time step in the top part of
the box. There, the maximum magnetic field strength is in the order of a few hundred
Gauss and although occurring at different places, this maximal value is probably not
varying much. Therefore the more or less constant time step.

It could this (the smaller and almost constant time step) be the reason which
impedes oscillation of the magnetic model and not any ‘damping’ effect of the mag-
netic field. In order to test this hypothesis, we ran the model d3t50g45mm00n04 with
B = 0 and HLLMMHD+PP, enforcing a constant time step of 0.1 s. The resulting
vertical mass flux at the level of 〈τ〉= 1 as a function of time is shown in Fig. 8.

Figure 8: Horizontally averaged, verical mean mass flux at the level of 〈τ〉 = 1 as a
function of time for model d3t50g45mm00n04. Red: Roe solver with VanLeer and
no magnetic field, Blue: HLLMHD+PP and B = 0, and Green: HLLMHD+PP and
B = 0 with a constant time step of 0.1 s.
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Figure 9: Bolometric radiative flux through the top boundary, Frtop, in units of σT 4
eff

as a function of time for model model d3t50g45mm00n04. Red: Roe solver with
VanLeer, no magnetic field. Blue: HLLMHD+PP, B = 0. Green: HLLMHD+PP,
B = 0, constant time step ∆t = 0.1 s.

The red curve was obtained with the Roe solver wit a model without magnetic
field, the blue curve with HLLMHD+PP and variable time step with a model with
B = 0, and the green curve again with HLLMHD+PP but with a constant time step
of 0.1 s. The blue and the read curve are identical to the corresponding curves in
Fig. 5 of part II of this report with the exception that the red curves carries now
on until t = 10818 s. It does not further grow in amplitude as we earlier suspected
from the first 7000 s. But most important, Fig. 8 shows that keeping the time step
small and constant does get rid of the spurious large and growing oscillation with
HLLMHD+PP. In Fact, the green curve approaches the behaviour and amplitude of
the oscillation as computed with the Roe solver. This proves that something is wrong
with the Hancock time integration. The solution should ideally not depend on the
size of the time step as long as it is smaller than the maximum allowed time step
given by the CLV condition. But obviously it depends on the time step size to a large
degree.

Fig. 9 shows the bolometric radiative flux of the same three models as of Fig. 8.
The green curve seems to follow the trend of the blue one but does not have the same
high frequency oscillation but shows a fluctuation more similar to the red curve from
the Roe solver.

Next we ran the same Teff = 5000 K model with B = 0 and with the HLLMHD
scheme and PP reconstruction but with hdtimeintegrationscheme = RungeKutta2
leaving the time step variable again. It varied between 0.1 s and 0.45 s, which is sim-
ilar to the variation with the Hancock integration scheme.
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Figure 10: Horizontally averaged, vertical mean mass flux at the level of 〈τ〉 = 1
as a function of time for model d3t50g45mm00n04. Red: Roe solver with VanLeer
and no magnetic field, Green: HLLMHD+PP and B = 0 with constant time step
∆t = 0.1 s, and Blue: HLLMHD+PP and B = 0 with Runge Kutta time integration
and variable time step.

Figure 11: Bolometric radiative flux through the top boundary, Frtop, in units of
σT 4

eff as a function of time for model model d3t50g45mm00n04. Red: Roe solver
with VanLeer, no magnetic field. Green: HLLMHD+PP, B = 0, constant time step
∆t = 0.1 s. Blue: HLLMHD+PP, B = 0, Runge Kutta time integration.
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Fig. 10 shows the horizontally averaged, vertical mean mass flux at the level of
〈τ〉= 1 as a function of time. The red curve refers to the solution obtained with the
Roe solver with VanLeer reconstruction and no magnetic field, the green curve to the
solution with HLLMHD+PP and B = 0 using a constant time step ∆t = 0.1 s. The
blue curve was obtained with HLLMHD+PP and B = 0 with the Runge Kutta time
integration with variable time step. This time, the blue and green curve follow each
other very closely, as it should be, proving that the the time integration is stable for
both cases. The Runge Kutta integration scheme shows a very regular and smooth
oscillation.

Fig. 11 shows the bolometric radiative flux of the same three models as of Fig. 10.
The green and the blue curve show the same trend although offset a bit with respect
to each other. This time the blue curve (Runge Kutta) shows small-scale wiggles and
is not very smooth.

Mean vertical mass flux as a function of heigth

In part II of this report we found spurious wiggles in plots of z, 〈ρvz〉(z). We now
want to check if they are still there when integratiing with a small constant time step
or when integrating with the Runge Kutta scheme. Previously we found that the
wiggles are still present for the models comprising a magnetic field but the mean
mass flux asymptotically approached zero with height and the cell-boundary mass-
flux stayed close to zero. We therefore can expect a similar behaviour for the above
mentioned time integration schemes.

Figure 12: Horizontally averaged, vertical mass flux as a function of height z at
t = 2100 s for the stellar simulation (Teff = 5000 K) with B = 0 as computed with
HLLMHD+PP and with constant small time step ∆t = 0.1 s. The black curve is the
cell centred mass flux (rhov3_xmean), while the red curve is the mass flux from the
cell interfaces (rhovb_xmean).

This is indeed the case as one can see fron Figs. 12 and 13 with slight differences
however. The cell interface fluxes stay much closer to zero for the cases with im-
proved time integration and while this flux was forming an upper envelope for the
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Figure 13: Horizontally averaged, vertical mass flux as a function of height z at
t = 2100 s for the stellar simulation (Teff = 5000 K) with B = 0 as computed with
HLLMHD+PP and with Runge Kutta time integration. The black curve is the cell
centred mass flux (rhov3_xmean), while the red curve is the mass flux from the cell
interfaces (rhovb_xmean).

cell centred fluxes in the previous cases, in the simulation with Runge Kutta time
integration, the mean value of the cell centred flux seems pretty accurately following
the cell interface flux.

Bolometric intensity maps

Our final objective is to study small-scale magnetic flux concentrations in various
stellar atmospheres. Despite of the various existing problems that still are with the
MHD module, we here show a first rough comparison of a solar model with the
Teff = 5000 K and the Teff = 4000 K model. In all three cases, the initial magnetic
field was homogeneous, vertical of a strength of 50 G.

Figure 14 shows the solar model in the top panel, and the stellar models in the
bottom row, where the left panel corresponds to the model with Teff = 5000 K and the
right panel to the model with Teff = 4000 K. All three models clearly show magnetic
flux concentrations as bright features located within intergranular lanes. These are
not well resolved in all three cases, indicating that we need higher spatial resolution.
In all three cases, the hot walls of the magnetic depression are conspicuously visible.
This seems to be at variance with simulations from, e.g., the MuRam code, which
shows a Gaussian-like distribution of brightness across magnetic flux sheets and not
the double stripes especially well visible in the Teff = 5000 K model. This may be
due to differences in the radiation transfer, in particular, short vs long characteristics.

The Sun shows this double layering less clearly than the cooler models, where
magnetic flux concentrations seem to become wider. Most conspicuously, the shape
of the bright features is changing from more elongated, sheet-like to more roundish,
point-like when going from Teff = 5000 K to Teff = 4000 K.

It would be interesting to find out about the radiative energy budget of magnetic
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Figure 14: Bolometric intensity from the solar model(top), the Teff = 5000 K model
(bottom, left), and the Teff = 4000 K model (bottom, right). All models computed
with HLLMHD and PP reconstruction with Hancock time integration. All models
have an initial homogeneous vertical magnetic field of strength 50 G. Snapshots were
taken at times t = 1291 s, 9231 s, and 4421 s for the solar, the Teff = 5000 K, and the
Teff = 4000 K model, respectively.
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Figure 15: Like Fig. 14 but in correct size relation.
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vs non-magnetic models for various stellar models. However, this is probably a
challenging task, since Frtop is fluctuating considerably as one can see for example
from Fig. 11. One would have to run an extremely long time series in order to
obtain a reliable value for the mean radiative output, accurately enough to determine
differences between magnetic and non-magnetic models. However, what could be
done fairly straightforward is to construct a magnetic mask, say, based on a certain
level of magnetic field strength. All the unmasked area, A0 (with field strength below
this level) would define a ‘quiet star’ region with the bolometric intensity Ibolo0. The
masked area, Amag would define the intensity of the magnetic features, Ibolomag. Thus,

〈A0Ibolo0 +AmagIbolomag〉−〈(A0 +Amag)Ibolo0〉
〈(A0 +Amag)Ibolo0〉

defines the relative radiative surplus or radiative deficit of the magnetic model with
respect to a hypothetically field-free model. The average 〈...〉 is taken over a suitable
time period. However, caution is indicated because this approach implicitly assumes
that the unmasked area is not influenced by the magnetic field at all, viz., that 〈Ibolo0〉
would reflect the mean intensity of a model without magnetic field.

Conclusions

We found that the Hancock time integration scheme is at the origin of the spurious
oscillations in mass flux and luminosity of models cooler than the Sun. Remedy is
provided by an artificial reduction of the time step (which is impractical) or switching
to the Runge Kutta 2nd order time integration. In the past, it was mentioned in some
email communications that Runge Kutta had not performed very well with MHD
test problems. In fact we also observe small wiggles in the bolometric intensity as
a function of time. So far, with the Runge Kutta scheme, we have only carried out
simulations with the Teff = 5000 K model with B = 0, not yet with models including
a non-vanishing magnetic field and not yet with the Teff = 4000 K model. The Runge
Kutta scheme has also moderated but by far not removed the wiggles in the cell-
centred mass fluxes as a function of height. This problem is still with us and may be
connected to the treatment of gravitation in the MHD module. In part II of this report,
we found that the wiggles disappear (up to the lowermost grid layer) when switching
to the van Leer reconstruction scheme so that we concluded that the wiggles occur
in connection with PP. PP also produces strong wiggles (saw teeth) in the temper-
ature (and other quantities) in the upper layers of magnetic models, mainly there
where swirls are generated by the transverse movement of magnetic fields. In part I
of this report we concluded that a hybrid reconstruction scheme (Bernd’s Franken-
stein?) might remedy this problem. So far we have not carried out any tests with
the unsplit scheme that was recently implemented by Werner Schaffenberger into the
MHD module.

Freiburg. i. Br., 18. 9. 2011


