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Abstract

The essential parameters of modern cosmological models are the Hub-

ble constant H0, the non–relativistic matter density parameter ΩM , and

the dark energy density parameter ΩΛ. Besides the determination of the

Hubble constant, the measurement of the two density parameters is a key

issue in Cosmology. Different observing methods, including Supernovae

of type Ia, have been used to fix these parameter for a concrete world

model. We study the methods based on various cosmological Supernovae

projects. Finally, we discuss the cosmological fundamental plane, where

each point represents a concrete cosmological model.

1 Introduction

The Universe consists on the large–scale of galaxy clusters (Virgo, Coma), fil-
aments (Great Wall), and Voids. With telescopes you could nowadays observe
around 100 billion bright galaxies. These galaxies are the atoms of the Universe,
whose distribution, motion and evolution one should understand. Many of these
insights come from the last 20 years. Cosmology is a very young and successful
discipline of Astronomy.

Hubble’s law is the statement in Cosmology that the redshift in light com-
ing from distant galaxies is proportional to their distance. The law was first
formulated by Edwin Hubble and Milton Humason in 1929 after nearly a decade
of observations. It is considered the first observational basis for the expanding
space paradigm and today serves as one of the most often cited pieces of evi-
dence in support of the Big Bang Theory. The most recent determination of the
Hubble constant, using the satellite Planck as 2016, yields a value of 67.80±0.77
km s−1 /Mpc 1.

In the decade before Hubble made his observations, a number of physicists
and mathematicians had established a consistent theory of the relationship be-
tween space and time by using Einstein’s field equation of general relativity.

1Planck Collaboration: Ade, P.A.R. et al. 2016, A&A, 594, 12
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Applying the most general principles to the question of the nature of the Uni-
verse yielded a dynamic solution that conflicted with the then prevailing notion
of a static Universe.

However, a few scientists continued to pursue the dynamical universe and
discovered that it could be characterized by a metric that came to be known after
its discoverers, namely Friedmann, Lemaitre, Robertson, and Walker. When the
metric was applied to the Einstein equations, the so–called Friedmann equations
emerged which characterized the expansion of the universe based on a parameter
known today as the scale factor which can be considered a scale invariant form
of the proportionality constant of Hubble’s Law. This idea of an expanding
spacetime would eventually lead to the Big Bang Theory.

2 Redshift and Hubble–Law

Edwin Hubble did most of his professional astronomical observing work at
Mount Wilson observatory, at the time the world’s most powerful telescope.
His observations of Cepheid variable stars in spiral nebulae enabled him to cal-
culate the distances to these objects. Surprisingly, these objects were discovered
to be at distances which place them well outside the Milky Way. The nebulae
were first described as island universes and it was only later that the name
galaxy would be applied to them.

For relatively nearby galaxies, the velocity v of a galaxy can be estimated
from the galaxy’s redshift z using the formula v = zc, where c is the speed of
light.

z ≡ λo − λe

λe
, (1)

λo is the observed wavelength and λe the emitted wavelength. z > 0 is a redshift
and z < 0 a blueshift. v = cz is the corresponding Doppler shift velocity.

The redshift z of most galaxies is positive, i.e. those galaxies move away
from us. Figure 1 shows an example of the redshift in the galaxie NGC 2903 2.
This fact had already been observed in 1912 by Slipher, and it was then carefully
investigated by Hubble, who correlated the redshift with apparent magnitudes.
In 1925, spectra of 43 galaxies (called nebulae at that time) were known. From
those, 38 galaxies showed a positive redshift. In 1929, Hubble published this
fundamental result that redshift of a galaxy increases with increasing distance

cz = H0D . (2)

This relation between the redshift z and the distance of cosmological objects is
now known as the Hubble–Law

In vector form, the Hubble–law states that the velocity ~v of a galaxy G at
position ~r with respect to the Galaxy is given by

~v = H0~r . (3)

2www.astro.washington.edu/courses/labs/clearinghouse/labs/HubbleLaw/ngc2903_

main.html
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Let us consider a the galaxy G from the point of view of a third galaxy G′ at
position ~r ′, which moves at velocity ~v ′ = Ho~r

′. Then, the velocity of G relative
to G′ is then

~v − ~v ′ = H0~r −H0~r
′ = H0(~r − ~r ′) . (4)

This means that also galaxy G′ observes that all galaxies move away. Since
galaxies define the cosmological space, we call this motion isotropic expansion

of the space between the galaxies. Only a relativistic theory of gravity can
explain this fundamental fact about the expansion of the Universe.

Lab–Tasks I

1. Describe the positions of RR Lyrae and δ Cepheid stars in the Hertzsprung-
Russell Diagram.

2. Describe the period–luminosity relation for δ Cepheid stars.

3. What is the observed wavelength of Lyα for a quasar with redshift z = 6.4?

4. Find out the maximum redshift observed for quasars (see Sloan Digital
Sky Survey project).

5. What is the meaning of isotropy for the expansion of the Universe? How
can one test the isotropy of the Universe?

6. Is the Universe really homogeneous?

3 The Hubble Space Telescope Key Project on

the Extragalactic Distance Scale

The main goal of Hubble Space Telescope (HST) Key Project on the Extragalac-
tic Distance Scale was to determine the Hubble Constant, H0, to an accuracy of
±10%. This goal has been achieved by the systematic observations of Cepheid
variable stars in several galaxies using the HST. The Key Project team used
the HST to observe 19 galaxies out to 108 million light–years (33 Mpc). They
discovered almost 800 Cepheid variable stars, a special class of pulsating star
used for accurate distance measurements. The spiral galaxy NGC 4603 is the
most distant galaxy in which Cepheid variables have been found. It is associated
with the Centaurus cluster, one of the most massive assemblages of galaxies in
the nearby universe.

3.1 What are Cepheid Variables?

The structure of all stars, including the Sun and Cepheid variable stars, is
determined by the opacity of matter in the star. If the matter is very opaque,
then it takes a long time for the photons to diffuse out from the hot core of the
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Figure 1: The global spectrum of the galaxy NGC 2903 (top). The spectrum
contains characteristic absorption lines and hydrogen emission lines (Hα). For
the measurements of the redshift, we can use especially Ca H and Ca K lines,
which appear in absorption (bottom).
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Figure 2: Henrietta Leavitt (1868–1929) discovered the period–luminosity rela-
tion for δ Cepheid stars.

star, and strong temperature and pressure gradients can be develop in the star.
If the matter is nearly transparent, then photons move easily through the star
and erase any temperature gradient. Cepheid stars oscillate between two states:
when the star is in its compact state, the helium in a layer of its atmosphere is
singly ionized. Photons scatter off of the bound electron in the singly ionized
helium atoms , thus, the layer is very opaque and large temperature and pressure
gradient build up across the layer. These large pressure cause the layer (and the
whole star) to expand. When the star is in its expanded state, the helium in the
layer is double ionized, so that the layer is more transparent to radiation and
there is much weaker pressure gradient across the layer. Without the pressure
gradient to support the star against gravity, the layer (and the whole star )
contracts and the star returns to its compressed state.

Figure 3: Light curve in the V -band of a δ Cepheid star as measured by HiP-
ParCoS (High Precision Parallax Collecting Satellite).

Cepheid variable stars have masses between five and twenty solar masses.
The more massive stars are more luminous and have more extended envelopes.
Because their envelopes are more extended and the density in their envelope is
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lower, their variability period, which is proportional to the inverse square root
of the density in the layer, is longer. Brighter Cepheid have longer periods. This
fundamental relationship between period and luminosity for δ Cepheid stars was
found in 1912 by Henrietta Leavitt, and it has been extensively used by Hubble3.
For given observed period P you can calculate from this relation the absolute
luminosity and then derive with the mean apparent magnitude the distance of
the star. For this purpose, not only one star is observed, but, if possible, a set
of stars in the same galaxy. The method is be calibrated, e.g. with the Cepheid
stars in the Magellanic clouds, given for the V –band

MV = −2.760(logP − 1.0)− 4.160 , (5)

and for theI–band

MI = −2.962(logP − 1.0)− 4.904 . (6)

The period P is taken in units of days. With this method, also the distance
of the Andromeda galaxy is derived. Before HST, this method could be used for
galaxies with distances upto 3 Mpc, with HST distances upto the Virgo galaxies
could be derived (M 100 e.g.), i.e. upto distances of about 20 Mpc. Here, we
have to take into account that galaxies in the Virgo cluster move at speeds of a
hundred km/s to compensate gravity in the cluster. With the observations of a
sample of 20 galaxies in the Virgo cluster, these uncertainties can be averaged
out. The final result of the Hubble Key Project is published in Freedman et al.
(2001) 4.

Lab–Tasks II: The Cepheid Method

1. Data in Table 1 give the lightcurve in the visual of the Cepheid Nr. 6 in
M 101 (NGC 5457) as a function of the Julian date. Determine from these
data the mean magnitude mV , the period P , and using the relation from
eq. (5) the distance modulus DM = mV −MV . (Keep in mind that data
sampling might not had been taken at equally space time intervals. Is
your estimate of P consistent with values in Figure 4?)

2. Make a plot for the data in Table 2: velocity V [in 1000km/s] vs. distance
D [in Mpc].

3. Determine the best linear fit to these data.

4. The slope of this curve directly provides the Hubble constant H0.

5. The inverse T0 = 1/H0 of the Hubble constant has the meaning of a time,
and is therefore a measure for the age of the Universe (Why?). Determine
the age T0 with your data.

3Sterne und Weltraum, Heft 10/2003
4Freedman, W. et al., 2001, ApJ, 553, 47
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Julian date V [mag]
2449049.0327 23.37 ± 0.08
2449049.0938 23.49 ± 0.10
2449057.4598 23.82 ± 0.20
2449064.0828 23.83 ± 0.13
2449064.1136 23.94 ± 0.26
2449069.2661 23.69 ± 0.20
2449069.3293 23.60 ± 0.13
2449131.6589 23.23 ± 0.17
2449131.7228 23.32 ± 0.12
2449141.6263 23.58 ± 0.11
2449141.6936 23.60 ± 0.10
2449146.1096 23.74 ± 0.10
2449146.1770 23.74 ± 0.11
2449156.8860 23.90 ± 0.13
2449156.9499 23.85 ± 0.14
2449160.7658 23.60 ± 0.13
2449160.8304 23.64 ± 0.10
2449163.2450 23.48 ± 0.10
2449163.3054 23.47 ± 0.11
2449295.2633 23.77 ± 0.15
2449295.3195 23.88 ± 0.17
2449307.7036 23.10 ± 0.12
2449307.7661 23.18 ± 0.11
2449429.6016 23.58 ± 0.16

Table 1: HST light curve of the Cepheid Nr. 6 in the galaxy M 101. Data from
HST Archive: http://www.ipac.caltech.edu.

7



Galaxy NCeph DM Error VHelio VCMB

(mag) (mag) [km/s] [km/s]

NGC 300 16 26.53 0.07 144 -57
NGC 925 73 29.80 0.04 553 398
NGC 1326A 17 31.04 0.09 1836 1787
NGC 1365 52 31.18 0.05 1636 1597
NGC 1425 29 31.60 0.05 1512 1477
NGC 2403 10 27.48 0.10 131 216
NGC 2541 34 30.25 0.05 559 736
NGC 2090 34 30.29 0.08 931 1057
NGC 3031 25 27.75 0.08 -34 65
NGC 3198 42 30.68 0.08 662 890
NGC 3351 49 29.85 0.09 778 1117
NGC 3368 11 29.97 0.06 897 1236
NGC 3621 69 29.08 0.06 805 1152
NGC 4321 52 30.78 0.07 1571 1856
NGC 4414 9 31.10 0.05 716 959
NGC 4496A 98 30.81 0.03 1730 2024
NGC 4548 24 30.88 0.05 486 763
NGC 4535 50 30.85 0.05 1961 2248
NGC 4536 39 30.80 0.04 1804 2097
NGC 4639 17 31.61 0.08 1010 1283
NGC 4725 20 30.38 0.06 1206 1446
NGC 5253 7 27.56 0.14 404 612
NGC 7331 13 30.81 0.09 816 508
IC 4182 18 28.28 0.06 321 513

Table 2: Mean distance moduli DM = 〈mV − MV 〉 (in mag) of the Cepheid
in local galaxies as measured with HST, together with the heliocentric velocity
VHelio, and Virgo–corrected expansion velocities VCMB . Data: Freedman, W.
et al. 2001, ApJ, 553, 47.
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Figure 4: RR Lyrae stars and δ Cepheid stars with typical periods.

4 Supernova of Type Ia as Standard Candles

The peak brightness of SNe of type Ia vary considerably. This behavior has
been investigated by means of Calan–Tololo calibration. Supernovae (Tabla 3).
The lightcurves showed a specific trend: the brighter the Supernova, the slower
it decays in brightness (see Fig. 5 top). Perlmutter and collaborators have then
shown that this behavior of the lightcurve van be corrected by adjusting the
decay time–scale. In this way, they found a universal lightcurve for Supernovae
of type Ia (Fig. 5 bottom). The effective apparent magnitude of a supernova
can then be calculated from the formula

meff
B = mpeak

obs +∆corr −KBB −AE (7)

∆corr is the correction factor, calculated from the observed lightcurve, AE means
the galactic extinction, and KBB is the famous K-correction.

Lab–Tasks III: Hubble Constant from Local Supernovae

1. Why are Supernovae of type II not suitable for cosmological standard
candles?

2. What is the difference in the spectra of Type I and Type II Supernovae?

3. What is the meaning of the K–Correction in Cosmology?

9



Figure 5: Low redshift SNe Type Ia lightcurves reveal a relationship between the
peak brightness and the duration of the outburst: Brighter Supernovae decay
slower, weaker ones faster (top). This fact can be used to correct the lightcurves
to create a general template (bottom).
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SN z σz mpeak
obs σpeak

obs AE KBB ∆corr σB

[mag] [mag] [mag] [mag] [mag] [mag]

1990O 0.030 0.002 16.62 0.03 0.39 -0.00 0.03 0.20
1990af 0.050 0.002 17.92 0.01 0.16 0.01 -0.12 0.18
1992P 0.026 0.002 16.13 0.03 0.12 -0.01 0.06 0.24
1992ae 0.075 0.002 18.61 0.12 0.15 0.03 0.00 0.20
1992ag 0.026 0.002 16.59 0.04 0.38 -0.01 0.06 0.20
1992al 0.014 0.002 14.60 0.01 0.13 -0.01 -0.01 0.23
1992aq 0.101 0.002 19.29 0.12 0.05 0.05 -0.03 0.23
1992bc 0.020 0.002 15.20 0.01 0.07 -0.01 0.05 0.20
1992bg 0.036 0.002 17.41 0.07 0.77 0.00 0.03 0.21
1992bh 0.045 0.002 17.67 0.04 0.10 0.01 0.05 0.19
1992bl 0.043 0.002 17.31 0.07 0.04 0.01 -0.07 0.18
1992bo 0.018 0.002 15.85 0.02 0.11 -0.01 -0.14 0.21
1992bp 0.079 0.002 18.55 0.02 0.21 0.04 -0.03 0.18
1992br 0.088 0.002 19.71 0.07 0.12 0.04 -0.26 0.18
1992bs 0.063 0.002 18.36 0.05 0.09 0.03 0.00 0.18
1993B 0.071 0.002 18.68 0.08 0.31 0.03 -0.01 0.20
1993O 0.052 0.002 17.83 0.01 0.25 0.01 -0.04 0.18
1993ag 0.050 0.002 18.29 0.02 0.56 0.01 -0.02 0.20

Table 3: Supernovae of type Ia from the Calán–Tololo calibration data. z means
redshift, σz the error redshift, mpeak

obs is the peak brightness in the B–band with
the corresponding error. KBB is the K–correction from the observed B–band
to the intrinsic B–band and AE the galactic extinction. ∆corr corrects the B–
band magnitude, as calculated from the lightcurve. σB is then the total error.
Data adapted from Table 2 of Perlmutter, S. et al. 1999, ApJ, 517, 565.
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4. Make a Hubble-Diagram with the data of Table 3 and Table 4: (z,meff
B ),

linear in logz (in the range 0.01≤ zle 1.0) and linear in the B–band mag-
nitude meff

B . Discuss the error bars.

5. Use the classical Hubble–law

m(z)−MB = 5 log

(

d[z]

[Mpc]

)

+ 25 , (8)

with the distance
d[z] =

c

H0

z . (9)

Since Supernovae are standard candles, we may write

m(z) = M+ 5 log z , (10)

with the constant

M = MB − 5 log

(

H0 [Mpc]

c

)

+ 25 . (11)

This represents a linear relation in the Hubble–diagram. Determine by
using the data for z ≤ 0.1 the constant M (called calibration constant).
What is your value for H0 according to your fit if the absolute magnitude
of a Supernova MB=-19.47±0.2? (SN–calibration by Tammann 1999)
Estimate the error for your Hubble constant.

6. Discuss alternative methods to determine the Hubble constant.

5 Cosmology with Supernovae

Supernovae are essentially observable upto redshifts of z = 2, since they be-
come as bright as their host galaxy. However, the spectrum gets redshifted by
the expansion of the Universe. In Table 4, Supernovae of type Ia are listed
as observed in the Supernova Project. With these data, you can extend the
Hubble–diagram of local Supernovae towards redshifts of z=0.9. On the near
future the Supernova/Acceleration Probe (SNAP), to detect SN at redshifts of
z ∼ 1.7.

5.1 Classical World Models

Besides the Hubble constant H0, the density parameters ΩM and ΩΛ are the
essential parameters of modern cosmological models. ΩM contains al contribu-
tions from non-relativistic matter (Baryons and Dark matter), while ΩΛ refers
to the Dark Energy, or Cosmological Constant. The definition of these constants
follows from the Friedmann equation5

Ṙ

R
≡ H2 =

8πG

3
ρM − kc2

R2
+

Λc2

3
, (12)

5The derivation of the Friedmann equation can be found in any textbook of Cosmology.
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SN z σz mpeak
obs σpeak

obs AE KBB ∆corr σB

[mag] [mag] [mag] [mag] [mag] [mag]

1992bi 0.458 0.001 22.12 0.10 0.03 -0.72 0.30 0.46
1994F 0.354 0.001 22.08 0.10 0.11 -0.58 -0.17 0.33
1994G 0.425 0.001 21.52 0.21 0.03 -0.68 -0.04 0.49
1994H 0.374 0.001 21.28 0.06 0.10 -0.61 -0.07 0.22
1994al 0.420 0.001 22.37 0.06 0.42 -0.68 -0.08 0.25
1994am 0.372 0.001 21.82 0.07 0.10 -0.61 -0.06 0.20
1994an 0.378 0.001 22.14 0.08 0.21 -0.62 0.03 0.37
1995aq 0.453 0.001 22.60 0.07 0.21 -0.71 -0.07 0.25
1995ar 0.465 0.005 22.71 0.04 0.07 -0.71 -0.02 0.30
1995as 0.498 0.001 23.02 0.07 0.07 -0.71 0.05 0.25
1995at 0.655 0.001 22.62 0.03 0.07 -0.66 0.06 0.21
1995aw 0.400 0.030 21.75 0.03 0.12 -0.65 0.09 0.19
1995ax 0.615 0.001 22.53 0.07 0.11 -0.67 0.09 0.25
1995ay 0.480 0.001 22.64 0.04 0.35 -0.72 -0.04 0.24
1995az 0.450 0.001 22.44 0.07 0.61 -0.71 -0.02 0.23
1995ba 0.388 0.001 22.08 0.04 0.06 -0.63 -0.01 0.20
1996cf 0.570 0.010 22.70 0.03 0.13 -0.68 0.02 0.22
1996cg 0.490 0.010 22.46 0.03 0.11 -0.72 0.04 0.20
1996ci 0.495 0.001 22.19 0.03 0.09 -0.71 0.01 0.19
1996ck 0.656 0.001 23.08 0.07 0.13 -0.66 -0.05 0.28
1996cl 0.828 0.001 23.53 0.10 0.18 -1.22 0.07 0.54
1996cm 0.450 0.010 22.66 0.07 0.15 -0.71 -0.05 0.23
1996cn 0.430 0.010 22.58 0.03 0.08 -0.69 -0.06 0.22
1997F 0.580 0.001 22.90 0.06 0.13 -0.68 0.01 0.23
1997G 0.763 0.001 23.56 0.41 0.20 -1.13 -0.02 0.53
1997H 0.526 0.001 22.68 0.05 0.16 -0.70 -0.06 0.20
1997I 0.172 0.001 20.04 0.02 0.16 -0.33 -0.03 0.18
1997J 0.619 0.001 23.25 0.08 0.13 -0.67 0.00 0.28
1997K 0.592 0.001 23.73 0.10 0.07 -0.67 0.09 0.37
1997L 0.550 0.010 22.93 0.05 0.08 -0.69 -0.02 0.25
1997N 0.180 0.001 20.19 0.01 0.10 -0.34 0.01 0.17
1997O 0.374 0.001 22.97 0.07 0.09 -0.61 0.02 0.24
1997P 0.472 0.001 22.52 0.04 0.10 -0.72 -0.03 0.19
1997Q 0.430 0.010 22.01 0.03 0.09 -0.69 -0.03 0.18
1997R 0.657 0.001 23.28 0.05 0.11 -0.66 0.00 0.23
1997S 0.621 0.001 23.03 0.05 0.11 -0.67 0.10 0.21
1997ac 0.320 0.010 21.38 0.03 0.09 -0.55 0.03 0.18
1997af 0.579 0.001 22.96 0.07 0.09 -0.68 -0.06 0.22
1997ai 0.450 0.010 22.25 0.05 0.14 -0.71 0.02 0.30
1997aj 0.581 0.001 22.55 0.06 0.11 -0.68 -0.03 0.22
1997am 0.416 0.001 21.97 0.03 0.11 -0.67 0.05 0.20
1997ap 0.830 0.010 23.20 0.07 0.13 -1.23 0.02 0.22

Table 4: SCP SNe Ia data. z is redshift, σz the corresponding error, mpeak
obs , peak

brightness in the B–band with corresponding uncertainty. AE , KBB, ∆corr, and
σB are in analogy to Table 3. Data adapted from Table 1 of Perlmutter, S. et
al. 1999, ApJ, 517, 565.
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ρM is the total mass–density of the Universe, k = ± 1,0, the curvature of
the 3–space. Λ is the Cosmological constant, introduced by Einstein. R(t)
is the expansion factor of a homogeneous and isotropic Universe, and H(t) =
˙R(t)/R(t) the expansion velocity at time t, with its value for the present time

t0 equal to the Hubble constant,H0 = H(t0).
The density parameters are defined in the following way:

• Matter density:

ΩM ≡ 8πG

3H2
0

ρM . (13)

• Dark energy:

ΩΛ ≡ Λc2

3H2
0

. (14)

• Curvature parameter:

Ωk ≡ − kc2

R2
0H

2
0

. (15)

The Friedmann equation implies then the closure relation

ΩM +ΩΛ +Ωk = 1 . (16)

5.2 Luminosity Distance and the Hubble–Diagrams

The method to determine the cosmological model by means of the Supernova
observations is based on the distance modulus

m(z)−M = 5 log dL(z; ΩM ,ΩΛ, H0) + 25 , (17)

which relates the apparent magnitude m(z) to the absolute magnitude M over
the luminosity distance dL(z; ΩM ,ΩΛ, H0). Notice that the luminosity dis-
tance depends on two of the Ω parameters since the remaining third parameter
is obtained from the closure relation given in eq. (16).

The expression for the luminosity distance given as a general integral over
the redshift range

dL(z; ΩM ,ΩΛ, H0) =
c

H0

1 + z
√

|Ωk|
S(x[z]) , (18)

where

x[z] =
√

|Ωk|
∫ z

0

dz′
√

ΩM (1 + z′)3 +Ωk(1 + z′)2 +ΩΛ

. (19)

S(x)is the function sinh(x), x, or sin(x), depending on the curvature of 3–space,
i.e. for Ωk > 0, Ωk = 0, Ωk < 0, respectively. This integral can always be done
numerically.

Analytic expressions exist for the luminosity distance in the following
special cases:
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• deSitter (Flat) Universe (Ωk = ΩM =0, ΩΛ = 1)

dL(z;H0) =
c

H0

z(1 + z) . (20)

• Standard Cold Dark Matter (SCDM): a Universe without Dark Energy
(ΩΛ = 0). given by the Mattig-formula6, parameterized by the Hubble
constant H0 and the deceleration parameter q0 = ΩM/2 − ΩΛ = ΩM/2,
Ωk +ΩM = 1

dL(z; ΩM , H0) =
c

H0

1

q20
(q0z + (q0 − 1)[

√

1 + 2q0z − 1]) . (21)

• Λ Cold Dark Matter Model(ΛCDM) with a flat Universe (Ωk = 0): Ue–Li
Pen7 has published an approximation for the case Ωk = 0, ΩM +ΩΛ = 1,

dL(z; ΩM , H0) =
c

H0

(1 + z)[η(0,ΩM )− η(z,ΩM )] , (22)

where

η(z,ΩM ) =2
√

s3 + 1[(1 + z)4 − 0.1540s(1 + z)3 + 0.4304s2(1 + z)2

+ 0.19097s3(1 + z) + 0.066941s4]−1/8 .
(23)

The parameter s is defined as follows, s3 = ΩΛ/ΩM = (1−ΩM )/ΩM . This
formula is exact in the limit ΩM → 1, ΩM → 0, and for z ≫ 1 . In the
range 0.2 < ΩM < 1, the error is less than 0.4%, and for all parameters
less than 4%.

Lab–Tasks IV: Extracting the best Cosmological model from your

own Hubble diagram.

1. Calculate from the distance modulus meff
B −MB, the luminosity distance

dL, for the Supernovae in Table 3 and 4. Plot this diagram with dL in
Gigaparsec as x–axis and cz in units of km/sec as y–axis. Test the linearity
of the Hubble-relation for redshifts z > 0.15.

2. Show that for z ≪ 1,the Mattig–formula converges towards the Hubble–
law, independent of the deceleration parameter q0. Notice that q0 < 1.

3. Plot in your Hubble diagram theoretical curves for ΩΛ = 0. Is this com-
patible with the data? consider in particular SCDM with

dL(z,H0) =
2c

H0

[1 + z −
√
1 + z] . (24)

6Mattig, W. 1958 Astron.Nachr., 284, 109
7Ue-Li Penn 1999, ApJ Sup, 120, 49
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4. Make a plot for the distance modulus DM as a function of the redshift
for the redshift range 0.01 < z < 5.0 (linear in redshift) for the following
models: deSitter, SCDM, and ΛCDM.

6 The Cosmological Concordance Model

The term Concordance Model is used in Cosmology to indicate the cur-
rently accepted and most commonly used cosmological model. It is important
to identify a concordance model, because the measurement of many astrophys-
ical quantities (e.g. distance, size, luminosity, and surface brightness) depend
upon the cosmological model used. Consequently, for ease of comparison if
nothing else, the models assumed in different studies should at least be similar,
if not identical.

The Cosmic Microwave Background (CMB) observations from COBE and
BOOMERang proved that the Universe is practically flat, i.e. Ωk = 0 8, so
currently, the concordance model is the ΛCDM model (which includes cold dark
matter and dark energy). In this model, the Universe is 13.8 billion years old,
made up of 4% baryonic matter, 23% dark matter, and 73% dark energy. The
Hubble constant for this model is 67.80 km/s/Mpc and the total density of the
Universe is very close to the critical value for the re–collapse. These values were
derived from Planck satellite observations of the cosmic microwave background
radiation. The present state of the Universe is represented by one point in the
Fundamental Plane of Cosmology (ΩM ,ΩΛ). Various constraints on possible
models can be discussed with this plane.

Lab–Tasks V: From the plot for the Fundamental Plane of Cosmology

give the positions and discuss the following models:

1. A flat model with Ωk = 0.

2. The transition from decelerated to accelerated models, i.e. q0 = 0.

3. Constraints from the Supernova projects.

4. Constraints from mass/luminosity observations in galaxy clusters.

5. Constraints from observations of the Cosmic Microwave Background (CMB)
from the Cosmic Background Explorer (COBE) and the Balloon Observa-
tions Of Millimetric Extragalactic Radiation and Geophysics (BOOMERang).

6. Constraints from observations of the CMB from the Wilkinson Microwave
Anisotropy Probe (WMAP).

7. Constraints from observations of the CMB from Planck Space Observa-
tory.

8de Bernardis,P. 2000, Nature, 404, 955
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Figure 6: The fundamental plane of Cosmology. Each point (ΩM ,ΩΛ) in this
plane represents the value of these parameters for a particular model. The
graph shows the constraints of these values from observations of galaxy clusters,
high-z Supernovae, and Cosmic Microwave Background (CMB) from COBE,
BOOMERang, WMAP, and Planck experiments. The hue of the colors indicate
the confidence of the measurements.
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8. How would you determine lines of constant ages on this plane?
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