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Optics and Telescopes

e M. Born, E. Wolf, Principles of Optics

e P. Léna, F. Lebrun, F. Mignard, Observational
Astrophysics

e D.J. Schroeder, Astronomical Optics

e R.R. Shannon, The Art and Science of Optical
Design

e M.J. Kidger, Fundamental Optical Design
e R.N. Wilson, Reflecting Telescope Optics | / |1
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Sign convention: all angles and distances in this diagram are positive
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Basics of Paraxial Optics

e Paraxial approximation: y and all angles are
small

e Law of refraction: n-sin 1 =n"sin I', In paraxial
approximation n-1 = n"-I'

e Points at distances s and s' from vertex are
called conjugate points (Image Is conjugate to
object)

e If s ors' = oo, the conjugate distance is called
focal length
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Conjugate Points in the Paraxial
Region
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B and B', Q and Q' are pairs of conjugate points

Transverse magnification: m = h'/h
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Angular Magnification

Angular magnification: M =tanu'/tanu=s/¢s
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Power, Magnification, Lagrange
Invariant

e Definition of power: P=2-0=0n_0__1n

e Transverse magnification: m=>- =R =1

e Angular magnification: M =& =5 =0 — 10

tanu S nm

e Lagrange invariant. H =nhtanu =n'h'tanu’

e In paraxial approximation: H = nhu=n"h"u'
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Setting n' = -1 for reflection gives unified formulae for lenses and
mirrors

Andreas Quirrenbach Basic Telescope Optics 8



Basic Relations for Simple Optical
Systems

e Power of two-surface system (thick lens, two-
mirror telescope): P=P, +P, -4 PP,

e Thin lens (d =0): P=R+P, = (n-1)(% - )

e Image scale: S['/mm|= 262s

e Image size: X[um]: 4.86 - f[m]'¢["]
e Focal ratio: F=1f/D

e Systems with small focal ratio (e.g., f/ 1.5) are
called ““fast” those with large focal ratio “slow”
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(a) Cassegrain

(b) Gregorian
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Normalized Parameters for Two-
Mirror Telescopes

k = y,/y, = ratio of ray heights at mirror margins,

p = R, /R, = ratio of mirror radii of curvature,

m = —s, /s, = transverse magnification of secondary,
2/52

f1B = Dn = back focal distance, or distance from vertex of primary mirror to final focal point,
p and n, back focal distance in units of f; and D, respectively,
F, = | f1|/D = primary mirror focal ratio,
W = (1 — k) f, = distance from secondary to primary mirror,
= location of telescope entrance pupil relative to the secondary when the primary mirror is the
aperture stop,
F = | f|/D = system focal ratio, where f is the telescope focal length.
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Important Relations for Two-
Mirror Telescopes

e Apply standard formulae to the secondary:
1_2_2 _2 (;_;):;(k—_p):_i
S R, kR, Ri\p K S, \ p ms,,

e Solve for m, p, and k In turn:
P mk k p(m_l)

o—k m-1 m
e Other relations:
1+ B=k(m+1) , n=Fp
P=P(1-k/p)=R/m , m=1/f=F/F
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Fermat's Principle

e The optical path length of an actual ray between
any two points P, and P, Is shorter than the
optical path length of any curve which joins
these points and lies in a neighborhood of it

e Formulation as variation principle: 5jn ds =0
e In (y,2) plane: 5[ n(y,2)y1+y?dz=5[ F(y,y,z)dz=0
e “Lagrange equation” for Fermat’s Principle:

oOF _d(oF)_,

oy dzloy
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Rays between Conjugates at Finite
Distances via Convex Reflector
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Derivation of Shape for Convex
Reflector (Finite Object Distance)

e Fermat’s Principle: | +1" = 25’

e From previous figure:
d?=y?+(-s—A) , l+d=s"-5s ,

12 =y2+(s'"+A) , A=-z2
o Some algebra: y* -4z +47° =5 =

e Using =-=2%  and defining 1-e° = 2

(s+s')

y* - 2Rz +(1-e”)z* =0| (hyperbola, since ss' < 0)
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Conic Sections

e General description: y? — 2Rz + (1—e2)z2 =0
e Define conic constant; K = —e”

Oblate ellipsoid: K >0

* Sphere: K=0
 Prolate ellipsoid: -1<K<0
» Paraboloid: K=-1

« Hyperboloid: K< -1
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Definition of Sagittal (Dashed)
and Tangential (Continuous) Rays

tangentia ,"l

In plane
X=0 /

sagittal:
out of plane
y = 0 In pupil plane
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Ray Diagram for a Lens Showing
Spherical Aberration
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Spot Diagrams through Focus for
Lens with Spherical Aberration

Focus = 4.00 Focus = 3.50 Focus = 3.00

Foous - 2.50 Focus = 2.00 Focus = 1.50 circle of least
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Behavior of Rays In the Presence
of Astigmatism

Sagittal Focus
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Spot Diagrams through Focus for
Lens with Astigmatism
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Behavior of Rays In the Presence
of Coma
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Spot Diagrams through Focus for
Lens with Coma
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Ray from Distant Object Reflected
by Concave Mirror
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Focal Length for Rays at Distance
r from AXIs

e From the geometry on the previous viewgraph:

7 -1 _ r(l—tan2¢)
0 " tan2¢ ~ 2tang

e For conic sections:

r’—2Rz+(1+K)z* =0=tan g = & = w;

e Inserting the second formula into the first:

f=z2+z,=3+ (1_5)2 B 2(R—(r1+K)z)
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Power Series

e Power series for z and f from binomial series:
2Rz+(1+K)z2°=0=

r.2
z= 1+KE[ -2 @+K )”2]

=+ ([1+K) S+ (1K)

R

16R5 e o o

f—R_ (1+K )r? B (1+K )(3+K )r*
2 4R 16R®
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Transverse Spherical Aberration
at the Paraxial Focus
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Transverse and Angular Spherical
Aberration

e From the figure on the previous viewgraph:

TSA _ r
Af T f-z

e Power series expansion:
TSA = —(1+K)-15 =31+ K )3+ K) L +
=TSA3+TSAS+...

e Corresponding angular aberration:
ASA3=2TSA3=—(1+K )L oc F3
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Higher-Order Aberrations

e From the formula on the previous page:

TsA5 _ 3(3+K)r* _ 3(3+K)
TSA3 ~  4R?  64F?

e For a sphere with F =1.19, TSA5 is 10% of
TSA3

e Higher-order aberrations are even less
Important for slower systems

e In most cases considering third-order
aberrations Is sufficient
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Path of Arbitrary Ray through

Refracting Surface
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Q and Q' lie in the yz plane; B is on the surface
the chief ray passes through the origin
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Optical Pathlength through
Refracting Surface

OPL =(-ns+n's’)=y(n'sin @' - nsir&@@)

4 y° |n'cos?0  ncos?o n'cos@’—ncose]
2 ' : :
S S astigmatism
4 X n _n__ n’cos@’—ncos@]
2 L S R
x°Y [nsing (1 cosé n'sind’ (1 cosé’
2 [ s (E_ R )_ s’ (?_ R )] coma
_ ¥° |nsing (c0326’ . cos@)_ n'sin &’ (cos2 0 _ cosd )]
2 L s S R s' s’ R
r* 11 (0 _n_ 14K (! ' n(1 _ cosd \ )
+ 55 |4 (5 -2 -2 (0" cos 0'-ncos 0))+ 2 (L -2 f e rical
n' (1 _cos0' ¥ _ b (pn / aberration
— (L st _b_(n'cos @ —ncos@)]

@® = OPL (chiefray)  ® =0 for tangential astigmatic image
@ =0 (Snell’s Law) @ = 0 for sagittal astigmatic image
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Structure of Optical Path
Difference

e Define @ as optical path difference to chief ray:
O=AYy+AY +AX°+A Y +AXy+Ar’
e From ® one can compute the aberrations

 |TAS| = half-length of astigmatic line image =
diameter of astigmatic blur circle

 3|TSC| = length of comatic flare = 1.5 x width of
comatic flare

 |TSA| = radius of blur at paraxial focus = 2 x
diameter of circle of least confusion

 TDI = distortion
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Third-Order Transverse
Aberrations for a Mirror Surface

Transverse Aberrations for Mirror Surface
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TAS = —E‘(r TDI = 0

“ Entrance pupil 1s at surface.
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Aberrations of a Paraboloid
Mirror in Collimated Light (m=0)

e ASA=0
e ASC=6/(16 F?)
e AAS = 6%/ (2F)

e As we know, a paraboloid mirror images an on-
axlis object perfectly (no spherical aberration)

e The useable field size Is given by coma and
astigmatism

e The field size is larger for slower mirrors
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Angular Aberrations of Paraboloid
Mirror

Angular aberration (arc-sec)

6 (arc-min)

Fig. 6.1. Angular aberrations of paraboloid in collimated light at selected focal ratios.
Solid lines: sagittal coma; dashed curves: astigmatism. The number on each curve is the focal

ratio.
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Two-Mirror Telescopes

e In the design of a two-mirror telescope, one can
choose the conic constants K,, K, of the
primary and secondary such that there i1s no
spherical aberration

e One solution is choosing K, and K, such that
each mirror produces a perfect on-axis image

« K, =-1 (paraboloidal primary)
« Hyperboloidal secondary
e This is called a Classical Cassegrain Telescope
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Aberration Coefficients for Two-
Mirror Telescopes

Aberration Coefficients for Two-Mirror Telescopes with By, = 0°

0 m*(m — f) b

| M+ B mm—p) N
P =0k, [m(l B aa+pr VT T

m*(m — )’
2(1 + B)(m? — 1)

_ O m—pm* - 1)
4m2(1 + B)*

By, [m+3ﬁ+ ma+n}

“In terms of m and f, spherical aberration is zero according to
the relation

(m—=1 1 +p) m+ 1\
M= s+ ) (K2+(m——1))'
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Angular Aberrations for Two-
Mirror Telescopes

Angular Aberrations of Two-Mirror Telescopes®
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“Terms in square brackets are taken from Table 6.5
or 6.6.(previous viewgraph)
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Angular Aberrations of Classical

Cassegrain Telescopes
e Secondary is hyperboloid: K, = (1 ’
e Coma Is the same as for a single paraboloid

e Astigmatism Is about m times worse, but

usually still smaller than coma
0

= T6r
as- % [ m® + /f}

2F | m(1 + p)
()"‘(m — /i)(m2 — 1)(m + 3))

4m3(1 + /i)2
2 [(m* =2)(m — B) +m(m+ 1) x = field curvature
" R, [ m2(1 + f) :I
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Ritchey-Chrétien Telescopes

e The choice of the conic constants to eliminate
both spherical aberration and coma gives a
large useable field

e Many modern telescopes (e.g., Keck, VLT,
HST) have a Ritchey-Chretien design

e Both primary and secondary are hyperboloids

N m+1 \2 m(m+
o Kl — _1_ mzz((lmf;) J KZ — _(m_—éll.-) o (mz—ﬂ()(mﬂ.)3
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Ray Tracing Software

e Optical systems are usually designed with the
help of ray tracing software

e These packages allow the user to define an
optical system, trace rays through the optical
system, and provide output for a detailed
analysis

e The most commonly used ray tracing packages
are Code V and Zemax
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OSLO EDU

e Sinclair Optics, the developers of the OSLO ray
tracing package, allow downloading of an
education version from their web page

e This version is fully functional for systems with
up to ten surfaces

 This Is not enough for a spectrograph or moderately
complicated lens design, but sufficient to analyze
most astronomical telescopes

e All you need to know can be found at
http://www.sinopt.com
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