
Task 8 Astrolab WS 2024/25

Determining the Rotation Curve
of the Milky Way

8.1 Goal

Determine the rotation curve v(r) of our galaxy within the solar orbit from radio
observations of H-I regions.

8.2 Materials

• Task manual (this document).

• H-I map and profiles from Burton, Astron. & Astrophys. Suppl. 2, 261 (1970).

8.3 Literature

• H.-H. Voigt: Abriss der Astronomie, Kap. IX, 4.3 (brief overview of quantities
and methods).

• A. Unsold, B. Baschek: Der Neue Kosmos, Kap. 5.2.

• Gunn et al.: Astron. J. 84, 1181 (1978) (calculation of the rotation curve using the
same method).

• Knapp et al.: Astron. J. 83, 1585 (1978), (calculation of the rotation curve outside
the solar orbit using a different method).

• P. Schneider: Extragalactic Astronomy and Cosmology (2015).

8.4 Experimental Preparation

The determination of the rotation curve v(r) of our galaxy is of fundamental impor-
tance for the development of dynamic models of its structure and, therefore, for our
understanding of its properties with respect to an external observer. Several methods
are available for determining the rotation law, all of which are based on the principle of
measuring relative velocities between the Sun and objects that closely follow the mean
rotation of the galaxy. Differences exist in the reduction method of the measurements
as well as the measurement procedures. Since we observe from a coordinate system
that is moving with (in first approximation, uniformly), and whose proper motion is
linked to the relationship to be determined, we must know the location (and therefore
also the distance!) of the galactic center and of the observed object in order to calculate
the rotational velocity with respect to an inertial system at the galactic center.
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The geometric relationships are shown in Figure ?? for a point-like object. Assuming
that the Sun and star describe strictly circular orbits, the rotation law can be calculated
as follows: The measured radial velocity ∆vr follows from the difference between the
radial components of the velocity vectors (the proper motion perpendicular to v⃗r is
generally too imprecisely known):

∆vr = |⃗v∗r| − |⃗v⊙r| = v(r) sin l∗ − v⊙ sin l, . (1)

Application of the sine law eliminates the unknown l∗:

sin l∗ =
r⊙
r

sin l, . (2)

This leads to the following by inserting into Equation (1):

∆vr = r⊙

(
v(r)

r
− v⊙

r⊙

)
sin l . (3)

Unfortunately, the quantity r, i.e., the distance of an object to the galactic center, is
generally not known. However, for stars or star clusters, a distance D can usually be
given, so that, according to the cosine law for r, we have:

r2 = D2 + r2
⊙ − 2Dr⊙ cos l, . (4)
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The determination of the distance is in most cases of insufficient accuracy, or the
motion of individual objects deviates too much from the average galactic rotation.

While equation (3) does not require any restrictions on the shape of v(r), it is possible
to represent r as a function of l by selecting a special class of functions v(r) that
correspond to a plausible model of the mass distribution of the galaxy. This is done
as follows: In an observation direction l, we see different radial components of the
respective circular orbit velocity along the line of sight. The radial component of the
observed object has a value according to equation (3):

vr
∗ =

r⊙
r

v(r) sin l, . (5)

The measured velocity component ∆vr differs from this only by a constant summand
for fixed l. So ∆vr is maximal when vr

∗ is maximal:

vr
∗ = max

(
v(r)

r

)
, . (6)

If v(r) does not increase too strongly outward, the position of the maximum will be
the one with the smallest r. It is given by:

rmin = r⊙ sin l (7)

for l∗ = π/2.

The set of all tangential points for l from −90◦ to 90◦ is therefore on a circle through
the locations of the Sun and the galactic center according to the theorem of Thales (see
Figure 1). Substituting equation(7) into (3) for the maximum relative velocity yields an
expression for v(r) that does not depend explicitly on the distance of observed objects:

∆vr, max = v(rmin)− v⊙ sin l
⇒ v(rmin) = v⊙ sin l + ∆vr, max . (8)

The equations still contain the unknown quantities r⊙ and v⊙. The quantity r⊙ only
changes the scaling of the r-axis and therefore has no influence on the curve itself. v⊙
fixes the outer end of the rotation curve (the inner end remains practically unaffected)
and thus affects the curve’s course. r⊙ must be determined in any case independently
of the ∆vr, max measurement. v⊙ is linked to the “differential rotation” determined
from local velocity and distance measurements through:

v(r)
r

− v⊙
r⊙

= ω(r)− ω⊙ ≈ δω

δr
D cos l (9)

and is determined independently from it. We use the standard values of the IAU from
1985 with r⊙ = 8,5 kpc and v⊙ = 220 km s−1.
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Figure 1: Objects in the line of sight.

Very suitable objects for a measurement using the described method are HI clouds.
The 21 cm line emitted by them allows for high-precision velocity measurements, they
are sufficiently evenly distributed over large areas of the galaxy, and follow the galactic
rotation well. Since radiation in the radio range penetrates the interstellar medium
almost absorption-free, we can also see and measure the tangential point for (almost)
all l. Such measurements by Burton (1970) are available in the form of profiles and a
map. For each galactic longitude l (in steps of 0,5◦), the signal intensity of the 21 cm
line is plotted against its Doppler shift and directly converted into intensities I(∆vr).
The maximum velocity at the tangential point ∆vr, max corresponds to the right edge of
the respective profile curve.

Figure 2: Tangential point as shown in case of Doppler broadening.

One difficulty in determining ∆vr, max is that the HI lines are broadened due to
thermal motion, among other factors. For δ-shaped line profiles, a diagram in the
form of Figure 2 above would be expected. The curve of the same emission with
Gaussian broadening is shown below it. As can be seen, the point of theoretical
maximum velocity is then somewhere at the right-side tail of the Gaussian and not at
its maximum. The location of this point is somewhat arbitrary. The profile curves are
accompanied by four examples of theoretically broadened profile curves, in which the
correct value for ∆vr, max is marked by an arrow. This is intended to provide a basis for
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experience in estimating the correct maximum velocity.

8.5 Warm-up Questions

a) Under what conditions is ∆vr maximal when r is minimal? What does this mean
for a spherically symmetric assumed mass distribution of the galaxy?

b) Besides the circular orbital velocity, what other physical quantitie determine the
shape of the profile curves? What possible effects can be expected on the result?

c) How can r⊙ and v⊙ be determined?

d) What is meant by antenna temperature?

8.6 Experimental Procedure

a) Consider the profile curves of the intensities over ∆vr and the map of the intensi-
ties over l · ∆vr. Compare the profiles and the map to determine which peaks at
small galactic longitudes belong to the tangential point.

b) Read off the value of ∆vr for descending l at l = 90◦. Pay attention to the position
of the tangential point on the right-side Gaussian tail (see above). Proceed in
steps of 2◦. Up to what l can one trust that the measured velocities actually
correspond to the velocity of HI clouds at the tangential point? Can you justify
your assumption?

Note: Use a suitable graphics program for reading off, or if you use a printout, use a ruler.

c) Convert the measured values to v(r) using Equation (8) and graphically represent
the function (e.g., in Python).

d) Discuss the course of the curve qualitatively with regard to the density distribution
in the galaxy and with respect to perturbations.

e) At r = 8,5 kpc, your curve probably does not smoothly transition to the assumed
value of 220 km s−1 for v⊙. What do you attribute this inconsistency to?

f) Calculate ω(r⊙) and thus the time for one orbit of the Sun around the galactic
center. Estimate the total mass of the galaxy within the Sun’s orbit assuming a
spherically symmetric mass distribution. Compare your estimate with current
reference values.
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