Modern Cosmology -
Part III.2: The Lambda-CDM Universe
Jacobs University Bremen

Skeptics at first suggested the result might arise from an error in the measurement of stellar distance – however, a similar observation was reported by a different group within two years. Further, independent support for the result soon emerged from measurements of the cosmic Microwave Background (CMB). In 2002, precision measurements of the CMB by the WMAP satellite suggested a Universe with geometry that is flat to within 1%. This result is completely inexplicable in the context of the known density of the matter of the Universe (both ordinary and dark). The known density of matter points to a Universe with Omega_m = 0.3, a long way from flatness (Omega_m =1). Hence the CMB measurements suggest that there is a great deal of matter/energy in the Universe unaccounted for. These measurements have been fully confirmed in the last ten years.
| 1. The Lambda-CDM Universe Lambda-CDM is an abbreviation for Lambda-Cold Dark Matter, which is also known as the cold dark matter model with Dark Energy. It is frequently referred to as the standard model of Big Bang Cosmology, since it attempts to explain the existence and structure of the cosmic microwave background, the large scale structure of galaxy clusters and the distribution of hydrogen, helium, lithium, oxygen and also the accelerating expansion of the universe observed in the light from distant galaxies and supernovae. It is the simplest model that is in general agreement with observed phenomena. |
Week_LCDM |
| 2. Midterm Review |
Mid-Term Review | Midterm Review Key Knowledge |
Key Knowledge |
| 3. Luminosity Distance and Angular Distance
Types of Distance Measures in an expanding Friedmann Universe (LCDM):
| |
| Fundamental Plane of the Universe
For definiteness, we refer to the "consensus cosmological model" (or LambdaCDM) as one in which H_0, Ω_k, Ω_B, Ω_M, Ω_Λ, t_0, σ_8, and n_S are free parameters, and dark energy is assumed to be given by an EoS w_0 and w_a (for a cosmological constant: w_0 = -1 and w_a = 0). For given Hubble constant, the density parameters are constrained by their sum to be equal unity: Ω_k + Ω_M + Ω_Λ = 1. Each cosmological model is given by a point in the (Ω_M,Ω_Λ)-plane, which is called the Fundamental Plane of Cosmology (see Figure). Also the age t_0 of the Universe can be discussed in terms of this Fundamental Plane. |
|
| Exercises IV with ............ |
Ex_4 |
| Exercises IV - Solutions ............ |
Ex_4 - Sol | Lecture Notes: Part III.2 pdf-File ...... |
LN: Part III.2 |


