Given that

 $- I_{v} = (1 - e^{-\tau}) B_{v}(T)$

- brightness temperature $T_b(v) \equiv 2 k_B v^2 / I_v c^2$

Show that in the Rayleigh-Jeans regime:

 $e^{-\tau} = (T - T_b)/T.$

At 10 GHz, the ARCADE experiment found:

 $T_b = 2.721 \pm 0.01$ K (Fixsen et al. 2004).

Find the 2σ lower limit on the optical depth given $T_{\text{CMB}} = 2.725 \pm 0.002$ K (COBE).

• Show that if the sound speed is relativistic, $c_s = c/\sqrt{3}$, the Friedman equation implies that in a flat universe

 $-\lambda_J = (\sqrt{8 \pi/3}) c/H$

 What does this imply about fluctuations in the early universe?

- Estimate the thickness of the last scattering shell (Silk scale):
- Mean time between collisions
 - $t_c \sim (cn_e \sigma_T)^{-1}$
 - Assume Silk scale is distance travelled in Hubble time 1/H at z_{ls} by a photon (random walk)
- To get H(t_{Is}), recall $\Omega_m(t) \propto \rho_m(t)/H^2(t)$
 - What is $\Omega_m(t_{ls})$?
- Data:
 - $\Omega_{\rm m}$ = 0.135 h⁻²; $\Omega_{\rm b}$ = 0.0224 h⁻²; $\sigma_{\rm T}$ = 6.65×10⁻²⁵ cm⁻²

• The COBE fluctuations corresponded to $T = 18 \mu$ K. Show that this leads to a value for the density fluctuation on horizon entry of 2×10⁻⁵.