Problem

Given that

$$
-\quad I_{v}=\left(1-e^{-\tau}\right) B_{v}(T)
$$

- brightness temperature $T_{b}(v) \equiv 2 k_{B} v^{2} / I_{v} c^{2}$

Show that in the Rayleigh-Jeans regime:
$e^{-\tau}=\left(T-T_{b}\right) / T$.
At 10 GHz , the ARCADE experiment found:
$T_{b}=2.721 \pm 0.01 \mathrm{~K}$ (Fixsen et al. 2004).
Find the 2σ lower limit on the optical depth given $T_{\text {CMB }}$ $=2.725 \pm 0.002 \mathrm{~K}$ (COBE).

Problem

- Show that if the sound speed is relativistic, $c_{s}=c / \sqrt{ } 3$, the Friedman equation implies that in a flat universe
$-\lambda_{J}=(\sqrt{ } 8 \pi / 3) c / H$
- What does this imply about fluctuations in the early universe?

Problem

- Estimate the thickness of the last scattering shell (Silk scale):
- Mean time between collisions
$-t_{c} \sim\left(\mathrm{cn}_{\mathrm{e}} \sigma_{\mathrm{T}}\right)^{-1}$
- Assume Silk scale is distance travelled in Hubble time $1 / \mathrm{H}$ at z_{ls} by a photon (random walk)
- To get $\mathrm{H}\left(\mathrm{t}_{\mathrm{s}}\right)$, recall $\Omega_{\mathrm{m}}(\mathrm{t}) \propto \rho_{\mathrm{m}}(\mathrm{t}) / \mathrm{H}^{2}(\mathrm{t})$
- What is $\Omega_{\mathrm{m}}\left(\mathrm{t}_{\mathrm{ls}}\right)$?
- Data:
$-\Omega_{\mathrm{m}}=0.135 \mathrm{~h}^{-2} ; \Omega_{\mathrm{b}}=0.0224 \mathrm{~h}^{-2} ; \sigma_{\mathrm{T}}=6.65 \times 10^{-25} \mathrm{~cm}^{-2}$

Problem

- The COBE fluctuations corresponded to T $=18 \mu \mathrm{~K}$. Show that this leads to a value for the density fluctuation on horizon entry of 2×10^{-5}.

